介质阻挡放电电离(DBDI)间歇取样和分析挥发性有机化合物的顶空注射方法。

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Daniel Heffernan, Frederik Oleinek, Ayla Schueler, Paak Wai Lau, Jürgen Kudermann, Alina Meindl, Mathias O Senge, Nicole Strittmatter
{"title":"介质阻挡放电电离(DBDI)间歇取样和分析挥发性有机化合物的顶空注射方法。","authors":"Daniel Heffernan, Frederik Oleinek, Ayla Schueler, Paak Wai Lau, Jürgen Kudermann, Alina Meindl, Mathias O Senge, Nicole Strittmatter","doi":"10.1021/jasms.4c00475","DOIUrl":null,"url":null,"abstract":"<p><p>A direct headspace injection method is presented and optimized for the analysis of volatile organic compounds (VOCs) using dielectric barrier discharge ionization-mass spectrometry (DBDI-MS), incorporating an intermediate vial in which the sample headspace is injected. The setup is built of commonly available, cheap consumable parts and easily enables the incorporation of different gases for generating different ionization atmospheres. The method can be fully automated by using standard GC autosamplers, and its rapid analysis time is suitable for high-throughput applications. We show that this method is suitable for both profiling analysis of complex samples such as biofluids and quantitative measurements for real-time reaction monitoring. Our optimized method demonstrated improved reproducibility and sensitivity, with detection limits for compounds tested in the high nanomolar to the low micromolar range, depending on the compound. Key parameters for method optimization were identified such as sample vial volume, headspace-to-liquid ratio, incubation temperature, and equilibration time. These settings were systematically evaluated to maximize the signal intensity and improve repeatability between measurements. Two use cases are demonstrated: (i) quantitative measurement of ethanol production by a metal-organic framework from CO<sub>2</sub> and (ii) profiling of biofluids following the consumption of asparagus.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"801-810"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Headspace Injection Method for Intermittent Sampling and Profiling Analyses of Volatile Organic Compounds Using Dielectric Barrier Discharge Ionization (DBDI).\",\"authors\":\"Daniel Heffernan, Frederik Oleinek, Ayla Schueler, Paak Wai Lau, Jürgen Kudermann, Alina Meindl, Mathias O Senge, Nicole Strittmatter\",\"doi\":\"10.1021/jasms.4c00475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A direct headspace injection method is presented and optimized for the analysis of volatile organic compounds (VOCs) using dielectric barrier discharge ionization-mass spectrometry (DBDI-MS), incorporating an intermediate vial in which the sample headspace is injected. The setup is built of commonly available, cheap consumable parts and easily enables the incorporation of different gases for generating different ionization atmospheres. The method can be fully automated by using standard GC autosamplers, and its rapid analysis time is suitable for high-throughput applications. We show that this method is suitable for both profiling analysis of complex samples such as biofluids and quantitative measurements for real-time reaction monitoring. Our optimized method demonstrated improved reproducibility and sensitivity, with detection limits for compounds tested in the high nanomolar to the low micromolar range, depending on the compound. Key parameters for method optimization were identified such as sample vial volume, headspace-to-liquid ratio, incubation temperature, and equilibration time. These settings were systematically evaluated to maximize the signal intensity and improve repeatability between measurements. Two use cases are demonstrated: (i) quantitative measurement of ethanol production by a metal-organic framework from CO<sub>2</sub> and (ii) profiling of biofluids following the consumption of asparagus.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"801-810\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00475\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00475","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

提出并优化了一种直接顶空进样方法,用于介质阻挡放电电离-质谱(DBDI-MS)分析挥发性有机化合物(VOCs),该方法采用中间小瓶将样品顶空进样。该装置是由常见的,廉价的消耗品组成的,很容易使不同气体的结合产生不同的电离气氛。该方法可通过标准气相色谱自动进样器实现全自动,分析时间短,适用于高通量应用。我们表明,该方法适用于复杂样品(如生物流体)的分析和实时反应监测的定量测量。优化后的方法具有较高的重现性和灵敏度,检测限在高纳摩尔到低微摩尔范围内,具体取决于化合物。确定了优化方法的关键参数,如样品体积、顶液比、孵育温度和平衡时间。系统地评估这些设置,以最大限度地提高信号强度,并提高测量之间的可重复性。演示了两个用例:(i)通过金属有机框架从二氧化碳中定量测量乙醇产量;(ii)在食用芦笋后分析生物流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Headspace Injection Method for Intermittent Sampling and Profiling Analyses of Volatile Organic Compounds Using Dielectric Barrier Discharge Ionization (DBDI).

A direct headspace injection method is presented and optimized for the analysis of volatile organic compounds (VOCs) using dielectric barrier discharge ionization-mass spectrometry (DBDI-MS), incorporating an intermediate vial in which the sample headspace is injected. The setup is built of commonly available, cheap consumable parts and easily enables the incorporation of different gases for generating different ionization atmospheres. The method can be fully automated by using standard GC autosamplers, and its rapid analysis time is suitable for high-throughput applications. We show that this method is suitable for both profiling analysis of complex samples such as biofluids and quantitative measurements for real-time reaction monitoring. Our optimized method demonstrated improved reproducibility and sensitivity, with detection limits for compounds tested in the high nanomolar to the low micromolar range, depending on the compound. Key parameters for method optimization were identified such as sample vial volume, headspace-to-liquid ratio, incubation temperature, and equilibration time. These settings were systematically evaluated to maximize the signal intensity and improve repeatability between measurements. Two use cases are demonstrated: (i) quantitative measurement of ethanol production by a metal-organic framework from CO2 and (ii) profiling of biofluids following the consumption of asparagus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信