Xinhao Zhang, Mingjing Geng, Caiyou Zhao, Yawen Niu, Ping Wang
{"title":"Acoustic Metamaterial Composite Structures Based on Multistage Fano Resonance for Noise Attenuation","authors":"Xinhao Zhang, Mingjing Geng, Caiyou Zhao, Yawen Niu, Ping Wang","doi":"10.1002/andp.202400224","DOIUrl":null,"url":null,"abstract":"<p>An acoustic metamaterial composite structure (AMCS) for Noise attenuation is proposed based on the principle of multilevel Fano resonance. The AMCS is composed of a type I labyrinthine metamaterial in the outer ring, a six-channel spiral metamaterial in the middle ring, a type II labyrinthine metamaterial in the inner ring, and a porous acoustic-absorbing metamaterial in the inner inlay. The simulation results show that the average sound attenuation reaches 17 dB in the range of 0–5000 Hz due to the multilevel Fano resonance effect during the sound wave propagation process. Meanwhile, the sound field distribution law and the flow diagram also verify that the multilevel Fano resonance mechanism is the key factor causing broadband sound absorption. Then, the AMCS is fabricated by 3D printing, and the simulation results are verified by the acoustic experiment for AMCS cell. Additionally, to further enhance the overall sound attenuation in the railroad noise field, a simulation model of the combined train-track-AMCS sound barrier coupling is developed, and it is found that the AMCS type sound barrier can effectively block the propagation of wheel-rail noise from different angles, and it possesses a noise reduction of 20 dB in all frequency bands.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400224","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
根据多级法诺共振原理,提出了一种用于噪声衰减的声超材料复合结构(AMCS)。AMCS 由外环的 I 型迷宫超材料、中环的六通道螺旋超材料、内环的 II 型迷宫超材料和内嵌的多孔吸声超材料组成。仿真结果表明,由于声波传播过程中的多级法诺共振效应,0-5000 Hz 范围内的平均声衰减达到 17 dB。同时,声场分布规律和流程图也验证了多级法诺共振机制是导致宽带吸声的关键因素。然后,利用三维打印技术制作了 AMCS,并通过 AMCS 单元的声学实验验证了仿真结果。此外,为了进一步提高铁路噪声场的整体声衰减效果,还建立了列车-轨道-AMCS 声屏障耦合的仿真模型,发现 AMCS 型声屏障能有效阻隔来自不同角度的轮轨噪声传播,在所有频段都能降低 20 dB 的噪声。
Acoustic Metamaterial Composite Structures Based on Multistage Fano Resonance for Noise Attenuation
An acoustic metamaterial composite structure (AMCS) for Noise attenuation is proposed based on the principle of multilevel Fano resonance. The AMCS is composed of a type I labyrinthine metamaterial in the outer ring, a six-channel spiral metamaterial in the middle ring, a type II labyrinthine metamaterial in the inner ring, and a porous acoustic-absorbing metamaterial in the inner inlay. The simulation results show that the average sound attenuation reaches 17 dB in the range of 0–5000 Hz due to the multilevel Fano resonance effect during the sound wave propagation process. Meanwhile, the sound field distribution law and the flow diagram also verify that the multilevel Fano resonance mechanism is the key factor causing broadband sound absorption. Then, the AMCS is fabricated by 3D printing, and the simulation results are verified by the acoustic experiment for AMCS cell. Additionally, to further enhance the overall sound attenuation in the railroad noise field, a simulation model of the combined train-track-AMCS sound barrier coupling is developed, and it is found that the AMCS type sound barrier can effectively block the propagation of wheel-rail noise from different angles, and it possesses a noise reduction of 20 dB in all frequency bands.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.