{"title":"(安。phy。3/2025)","authors":"","doi":"10.1002/andp.202570006","DOIUrl":null,"url":null,"abstract":"<p><b>Metamaterials</b></p><p>In article number 2400250, Yueyi Yuan, Yue Wang, Kuang Zhang, and co-workers systematically classify bound states in the continuum (BICs) phenomena and discuss their theoretical formation mechanisms and topological properties. Current advancements and applications of BIC-engineered devices are examined, alongside key challenges such as structural precision, material selection, and measurement complexities. Prospective directions for future research and development in the field of BICs are also outlined.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570006","citationCount":"0","resultStr":"{\"title\":\"(Ann. Phys. 3/2025)\",\"authors\":\"\",\"doi\":\"10.1002/andp.202570006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Metamaterials</b></p><p>In article number 2400250, Yueyi Yuan, Yue Wang, Kuang Zhang, and co-workers systematically classify bound states in the continuum (BICs) phenomena and discuss their theoretical formation mechanisms and topological properties. Current advancements and applications of BIC-engineered devices are examined, alongside key challenges such as structural precision, material selection, and measurement complexities. Prospective directions for future research and development in the field of BICs are also outlined.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202570006\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202570006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
文章编号2400250,Yuan Yueyi, Wang Yue, Kuang Zhang等人系统地分类了连续统(BICs)现象中的束缚态,并讨论了它们的理论形成机制和拓扑性质。目前的进展和应用的bicc工程设备进行了检查,以及关键的挑战,如结构精度,材料选择和测量的复杂性。展望了未来生物燃料领域的研究与发展方向。
In article number 2400250, Yueyi Yuan, Yue Wang, Kuang Zhang, and co-workers systematically classify bound states in the continuum (BICs) phenomena and discuss their theoretical formation mechanisms and topological properties. Current advancements and applications of BIC-engineered devices are examined, alongside key challenges such as structural precision, material selection, and measurement complexities. Prospective directions for future research and development in the field of BICs are also outlined.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.