{"title":"利用不变子图 GNN 学习不同脑部疾病的一般脑网络表征","authors":"Hao Zhang;Ran Song;Liping Wang;Lei Mou;Yushan Lu;Yitian Zhao;Wei Zhang","doi":"10.1109/TSIPN.2025.3540709","DOIUrl":null,"url":null,"abstract":"Distribution shifts across data from various brain disorders pose significant challenges for diagnosis. Establishing general feature representations that can handle these distribution shifts is crucial for accurately diagnosing these conditions. However, this area remains largely unexplored. This work propose an Invariant Subgraph GNN (IS-GNN) to learn general brain network representations for classifying various brain disorders in resting-state fMRI. This model employs an invariant subgraph learning mechanism to capture invariant brain graphs and handle distribution shifts. Moreover, we have developed an adaptive structure perception module to improve the detection of invariant subgraph features in brain networks by assessing the importance of nodes within the brain graph. To further refine the model, we propose a self-supervised loss for invariant subgraph learning, ensuring the generation of invariant brain network representations. Pretrained on data from 1,943 subjects across three public datasets corresponding to Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, and Parkinson's Disease, the fine-tuning experiments of our proposed method demonstrate that the model achieves the state-of-the-art classification performance on not only the three datasets but also on an external Alzheimer's Disease dataset across.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"230-241"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning General Brain Network Representations of Different Brain Disorders Using Invariant Subgraph GNN\",\"authors\":\"Hao Zhang;Ran Song;Liping Wang;Lei Mou;Yushan Lu;Yitian Zhao;Wei Zhang\",\"doi\":\"10.1109/TSIPN.2025.3540709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distribution shifts across data from various brain disorders pose significant challenges for diagnosis. Establishing general feature representations that can handle these distribution shifts is crucial for accurately diagnosing these conditions. However, this area remains largely unexplored. This work propose an Invariant Subgraph GNN (IS-GNN) to learn general brain network representations for classifying various brain disorders in resting-state fMRI. This model employs an invariant subgraph learning mechanism to capture invariant brain graphs and handle distribution shifts. Moreover, we have developed an adaptive structure perception module to improve the detection of invariant subgraph features in brain networks by assessing the importance of nodes within the brain graph. To further refine the model, we propose a self-supervised loss for invariant subgraph learning, ensuring the generation of invariant brain network representations. Pretrained on data from 1,943 subjects across three public datasets corresponding to Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, and Parkinson's Disease, the fine-tuning experiments of our proposed method demonstrate that the model achieves the state-of-the-art classification performance on not only the three datasets but also on an external Alzheimer's Disease dataset across.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"230-241\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10879572/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10879572/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Learning General Brain Network Representations of Different Brain Disorders Using Invariant Subgraph GNN
Distribution shifts across data from various brain disorders pose significant challenges for diagnosis. Establishing general feature representations that can handle these distribution shifts is crucial for accurately diagnosing these conditions. However, this area remains largely unexplored. This work propose an Invariant Subgraph GNN (IS-GNN) to learn general brain network representations for classifying various brain disorders in resting-state fMRI. This model employs an invariant subgraph learning mechanism to capture invariant brain graphs and handle distribution shifts. Moreover, we have developed an adaptive structure perception module to improve the detection of invariant subgraph features in brain networks by assessing the importance of nodes within the brain graph. To further refine the model, we propose a self-supervised loss for invariant subgraph learning, ensuring the generation of invariant brain network representations. Pretrained on data from 1,943 subjects across three public datasets corresponding to Autism Spectrum Disorder, Attention Deficit Hyperactivity Disorder, and Parkinson's Disease, the fine-tuning experiments of our proposed method demonstrate that the model achieves the state-of-the-art classification performance on not only the three datasets but also on an external Alzheimer's Disease dataset across.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.