基于局部-全局相关学习的学习聚焦全光学图像压缩

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gaosheng Liu;Huanjing Yue;Bihan Wen;Jingyu Yang
{"title":"基于局部-全局相关学习的学习聚焦全光学图像压缩","authors":"Gaosheng Liu;Huanjing Yue;Bihan Wen;Jingyu Yang","doi":"10.1109/TMM.2024.3521815","DOIUrl":null,"url":null,"abstract":"The dense light field sampling of focused plenoptic images (FPIs) yields substantial amounts of redundant data, necessitating efficient compression in practical applications. However, the presence of discontinuous structures and long-distance properties in FPIs poses a challenge. In this paper, we propose a novel end-to-end approach for learned focused plenoptic image compression (LFPIC). Specifically, we introduce a local-global correlation learning strategy to build the nonlinear transforms. This strategy can effectively handle the discontinuous structures and leverage long-distance correlations in FPI for high compression efficiency. Additionally, we propose a spatial-wise context model tailored for LFPIC to help emphasize the most related symbols during coding and further enhance the rate-distortion performance. Experimental results demonstrate the effectiveness of our proposed method, achieving a 22.16% BD-rate reduction (measured in PSNR) on the public dataset compared to the recent state-of-the-art LFPIC method. This improvement holds significant promise for benefiting the applications of focused plenoptic cameras.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1216-1227"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learned Focused Plenoptic Image Compression With Local-Global Correlation Learning\",\"authors\":\"Gaosheng Liu;Huanjing Yue;Bihan Wen;Jingyu Yang\",\"doi\":\"10.1109/TMM.2024.3521815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dense light field sampling of focused plenoptic images (FPIs) yields substantial amounts of redundant data, necessitating efficient compression in practical applications. However, the presence of discontinuous structures and long-distance properties in FPIs poses a challenge. In this paper, we propose a novel end-to-end approach for learned focused plenoptic image compression (LFPIC). Specifically, we introduce a local-global correlation learning strategy to build the nonlinear transforms. This strategy can effectively handle the discontinuous structures and leverage long-distance correlations in FPI for high compression efficiency. Additionally, we propose a spatial-wise context model tailored for LFPIC to help emphasize the most related symbols during coding and further enhance the rate-distortion performance. Experimental results demonstrate the effectiveness of our proposed method, achieving a 22.16% BD-rate reduction (measured in PSNR) on the public dataset compared to the recent state-of-the-art LFPIC method. This improvement holds significant promise for benefiting the applications of focused plenoptic cameras.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"1216-1227\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856419/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856419/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

聚焦全光图像(fpi)的密集光场采样产生大量冗余数据,需要在实际应用中进行有效压缩。然而,不连续结构和长距离特性的存在给fpi带来了挑战。在本文中,我们提出了一种新的端到端学习聚焦全光学图像压缩(LFPIC)方法。具体来说,我们引入了局部-全局相关学习策略来构建非线性变换。该策略可以有效地处理不连续结构,并利用FPI中的远距离相关来提高压缩效率。此外,我们提出了一种适合LFPIC的空间上下文模型,以帮助在编码过程中强调最相关的符号,并进一步提高率失真性能。实验结果证明了我们提出的方法的有效性,与最近最先进的LFPIC方法相比,在公共数据集上实现了22.16%的bd率降低(以PSNR测量)。这一改进为聚焦全光学相机的应用带来了巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learned Focused Plenoptic Image Compression With Local-Global Correlation Learning
The dense light field sampling of focused plenoptic images (FPIs) yields substantial amounts of redundant data, necessitating efficient compression in practical applications. However, the presence of discontinuous structures and long-distance properties in FPIs poses a challenge. In this paper, we propose a novel end-to-end approach for learned focused plenoptic image compression (LFPIC). Specifically, we introduce a local-global correlation learning strategy to build the nonlinear transforms. This strategy can effectively handle the discontinuous structures and leverage long-distance correlations in FPI for high compression efficiency. Additionally, we propose a spatial-wise context model tailored for LFPIC to help emphasize the most related symbols during coding and further enhance the rate-distortion performance. Experimental results demonstrate the effectiveness of our proposed method, achieving a 22.16% BD-rate reduction (measured in PSNR) on the public dataset compared to the recent state-of-the-art LFPIC method. This improvement holds significant promise for benefiting the applications of focused plenoptic cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信