利用 AlphaFold-Multimer 研究白细胞介素-6 家族的可塑性

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Stefan Düsterhöft , Johannes N. Greve , Christoph Garbers
{"title":"利用 AlphaFold-Multimer 研究白细胞介素-6 家族的可塑性","authors":"Stefan Düsterhöft ,&nbsp;Johannes N. Greve ,&nbsp;Christoph Garbers","doi":"10.1016/j.csbj.2025.02.030","DOIUrl":null,"url":null,"abstract":"<div><div>Cytokines are important soluble mediators that are involved in physiological and pathophysiological processes. Among them, members of the interleukin-6 (IL-6) family of cytokines have gained remarkable attention, because especially the name-giving cytokine IL-6 has been shown to be an excellent target to treat inflammatory and autoimmune diseases. The IL-6 family consists of nine members, which activate their target cells via combinations of non-signaling α- and/or signal-transducing β-receptors. While some receptor combinations are exclusively used by a single cytokine, other cytokine receptor combinations are used by multiple cytokines. Research in recent years unraveled another level of complexity: several cytokine cannot only signal via their canonical receptors, but can bind to and signal via additional α- and/or β-receptors, albeit with less affinity. While several examples of such cytokine plasticity have been reported, a systematic analysis of this phenomenon is lacking. The development of artificial intelligence programs like AlphaFold allows the computational analysis of protein complexes in a systematic manner. Here, we develop a analysis pipeline for cytokine:cytokine receptor interaction and show that AlphaFold-Multimer correctly predicts the canonical ligands of the IL-6 family. However, AlphaFold-Multimer does not provide sufficient insight to conclusively predict alternative, low-affinity ligands for receptors within the IL-6 family.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 946-959"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating plasticity within the interleukin-6 family with AlphaFold-Multimer\",\"authors\":\"Stefan Düsterhöft ,&nbsp;Johannes N. Greve ,&nbsp;Christoph Garbers\",\"doi\":\"10.1016/j.csbj.2025.02.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cytokines are important soluble mediators that are involved in physiological and pathophysiological processes. Among them, members of the interleukin-6 (IL-6) family of cytokines have gained remarkable attention, because especially the name-giving cytokine IL-6 has been shown to be an excellent target to treat inflammatory and autoimmune diseases. The IL-6 family consists of nine members, which activate their target cells via combinations of non-signaling α- and/or signal-transducing β-receptors. While some receptor combinations are exclusively used by a single cytokine, other cytokine receptor combinations are used by multiple cytokines. Research in recent years unraveled another level of complexity: several cytokine cannot only signal via their canonical receptors, but can bind to and signal via additional α- and/or β-receptors, albeit with less affinity. While several examples of such cytokine plasticity have been reported, a systematic analysis of this phenomenon is lacking. The development of artificial intelligence programs like AlphaFold allows the computational analysis of protein complexes in a systematic manner. Here, we develop a analysis pipeline for cytokine:cytokine receptor interaction and show that AlphaFold-Multimer correctly predicts the canonical ligands of the IL-6 family. However, AlphaFold-Multimer does not provide sufficient insight to conclusively predict alternative, low-affinity ligands for receptors within the IL-6 family.</div></div>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"Pages 946-959\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2001037025000558\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000558","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating plasticity within the interleukin-6 family with AlphaFold-Multimer
Cytokines are important soluble mediators that are involved in physiological and pathophysiological processes. Among them, members of the interleukin-6 (IL-6) family of cytokines have gained remarkable attention, because especially the name-giving cytokine IL-6 has been shown to be an excellent target to treat inflammatory and autoimmune diseases. The IL-6 family consists of nine members, which activate their target cells via combinations of non-signaling α- and/or signal-transducing β-receptors. While some receptor combinations are exclusively used by a single cytokine, other cytokine receptor combinations are used by multiple cytokines. Research in recent years unraveled another level of complexity: several cytokine cannot only signal via their canonical receptors, but can bind to and signal via additional α- and/or β-receptors, albeit with less affinity. While several examples of such cytokine plasticity have been reported, a systematic analysis of this phenomenon is lacking. The development of artificial intelligence programs like AlphaFold allows the computational analysis of protein complexes in a systematic manner. Here, we develop a analysis pipeline for cytokine:cytokine receptor interaction and show that AlphaFold-Multimer correctly predicts the canonical ligands of the IL-6 family. However, AlphaFold-Multimer does not provide sufficient insight to conclusively predict alternative, low-affinity ligands for receptors within the IL-6 family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信