基于预览控制的Takagi-Sugeno模糊非线性系统鲁棒迭代学习控制

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Li Li , Ye Hui , Jia Chen
{"title":"基于预览控制的Takagi-Sugeno模糊非线性系统鲁棒迭代学习控制","authors":"Li Li ,&nbsp;Ye Hui ,&nbsp;Jia Chen","doi":"10.1016/j.chaos.2025.116276","DOIUrl":null,"url":null,"abstract":"<div><div>Preview control utilizes future reference signal information to enhance system dynamic response and tracking performance. Iterative learning control represents an effective approach for managing repetitive tasks and has found widespread applications in industrial systems. This paper presents an innovative methodology for developing fuzzy iterative learning preview control using the Takagi-Sugeno (T-S) fuzzy model is discussed. The design incorporates robustness against time-varying uncertainties, and reference tracking capabilities. To accomplish this objective, the T-S fuzzy system is integrated with time-variant uncertainties to establish an augmented error system, thereby transforming the original fuzzy iterative learning preview control problem issue into a stability analysis of the augmented error systems. Subsequently, two distinct fuzzy iterative learning preview control laws are formulated by incorporating the T-S fuzzy system's states or outputs, tracking error, and a previewed reference signal to address the tracking control challenge. Novel sufficient conditions for the asymptotic stability of the augmented error system are derived using the linear matrix inequality (LMI) technique and fuzzy Lyapunov function analysis. Finally, the effectiveness of both proposed control strategies is validated through two numerical examples.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116276"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust iterative learning control for Takagi-Sugeno fuzzy nonlinear systems via preview control\",\"authors\":\"Li Li ,&nbsp;Ye Hui ,&nbsp;Jia Chen\",\"doi\":\"10.1016/j.chaos.2025.116276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Preview control utilizes future reference signal information to enhance system dynamic response and tracking performance. Iterative learning control represents an effective approach for managing repetitive tasks and has found widespread applications in industrial systems. This paper presents an innovative methodology for developing fuzzy iterative learning preview control using the Takagi-Sugeno (T-S) fuzzy model is discussed. The design incorporates robustness against time-varying uncertainties, and reference tracking capabilities. To accomplish this objective, the T-S fuzzy system is integrated with time-variant uncertainties to establish an augmented error system, thereby transforming the original fuzzy iterative learning preview control problem issue into a stability analysis of the augmented error systems. Subsequently, two distinct fuzzy iterative learning preview control laws are formulated by incorporating the T-S fuzzy system's states or outputs, tracking error, and a previewed reference signal to address the tracking control challenge. Novel sufficient conditions for the asymptotic stability of the augmented error system are derived using the linear matrix inequality (LMI) technique and fuzzy Lyapunov function analysis. Finally, the effectiveness of both proposed control strategies is validated through two numerical examples.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"194 \",\"pages\":\"Article 116276\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925002899\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002899","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预览控制利用未来的参考信号信息来增强系统的动态响应和跟踪性能。迭代学习控制是一种管理重复性任务的有效方法,在工业系统中得到了广泛的应用。本文提出了一种利用Takagi-Sugeno (T-S)模糊模型开发模糊迭代学习预览控制的创新方法。该设计结合了对时变不确定性的鲁棒性和参考跟踪能力。为实现这一目标,将T-S模糊系统与时变不确定性相结合,建立增广误差系统,从而将原来的模糊迭代学习预览控制问题转化为增广误差系统的稳定性分析问题。随后,结合T-S模糊系统的状态或输出、跟踪误差和预览参考信号,制定了两种不同的模糊迭代学习预览控制律,以解决跟踪控制的挑战。利用线性矩阵不等式(LMI)技术和模糊李雅普诺夫函数分析,导出了增广误差系统渐近稳定的新充分条件。最后,通过两个数值算例验证了两种控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust iterative learning control for Takagi-Sugeno fuzzy nonlinear systems via preview control
Preview control utilizes future reference signal information to enhance system dynamic response and tracking performance. Iterative learning control represents an effective approach for managing repetitive tasks and has found widespread applications in industrial systems. This paper presents an innovative methodology for developing fuzzy iterative learning preview control using the Takagi-Sugeno (T-S) fuzzy model is discussed. The design incorporates robustness against time-varying uncertainties, and reference tracking capabilities. To accomplish this objective, the T-S fuzzy system is integrated with time-variant uncertainties to establish an augmented error system, thereby transforming the original fuzzy iterative learning preview control problem issue into a stability analysis of the augmented error systems. Subsequently, two distinct fuzzy iterative learning preview control laws are formulated by incorporating the T-S fuzzy system's states or outputs, tracking error, and a previewed reference signal to address the tracking control challenge. Novel sufficient conditions for the asymptotic stability of the augmented error system are derived using the linear matrix inequality (LMI) technique and fuzzy Lyapunov function analysis. Finally, the effectiveness of both proposed control strategies is validated through two numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信