IK-Geo:基于子问题分解的统一机器人逆运动学

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Alexander J. Elias, John T. Wen
{"title":"IK-Geo:基于子问题分解的统一机器人逆运动学","authors":"Alexander J. Elias,&nbsp;John T. Wen","doi":"10.1016/j.mechmachtheory.2025.105971","DOIUrl":null,"url":null,"abstract":"<div><div>We present IK-Geo, a highly capable and computationally efficient open-source robot inverse kinematics (IK) solver. In this unifying approach, IK for any 6-DOF all-revolute (6R) manipulator is decomposed into six canonical geometric subproblems solved by intersecting circles with other geometric objects. Subproblems are efficiently solved in all cases including in a continuous and sometimes least-squares sense when a solution does not exist. This continuity requirement means IK-Geo finds all IK solutions including singular solutions and sometimes least-squares solutions. Robots with three intersecting or parallel axes are solved in closed form. All other commercially available robots have at least one pair of intersecting or parallel axes and are solved by searching over one joint angle. Fully general robots are solved by searching over two joint angles. Search solutions may be converted to a system of three or four polynomials in terms of the end effector pose in the tangent half-angle of one joint. A comparison with IKFast and the MATLAB Robotics Toolbox IK solver demonstrates that IK-Geo has faster computation and can solve more classes of robots.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"209 ","pages":"Article 105971"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IK-Geo: Unified robot inverse kinematics using subproblem decomposition\",\"authors\":\"Alexander J. Elias,&nbsp;John T. Wen\",\"doi\":\"10.1016/j.mechmachtheory.2025.105971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present IK-Geo, a highly capable and computationally efficient open-source robot inverse kinematics (IK) solver. In this unifying approach, IK for any 6-DOF all-revolute (6R) manipulator is decomposed into six canonical geometric subproblems solved by intersecting circles with other geometric objects. Subproblems are efficiently solved in all cases including in a continuous and sometimes least-squares sense when a solution does not exist. This continuity requirement means IK-Geo finds all IK solutions including singular solutions and sometimes least-squares solutions. Robots with three intersecting or parallel axes are solved in closed form. All other commercially available robots have at least one pair of intersecting or parallel axes and are solved by searching over one joint angle. Fully general robots are solved by searching over two joint angles. Search solutions may be converted to a system of three or four polynomials in terms of the end effector pose in the tangent half-angle of one joint. A comparison with IKFast and the MATLAB Robotics Toolbox IK solver demonstrates that IK-Geo has faster computation and can solve more classes of robots.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"209 \",\"pages\":\"Article 105971\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25000606\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25000606","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出IK- geo,一个功能强大,计算效率高的开源机器人逆运动学(IK)求解器。在此统一方法中,将任意6自由度全转动机械臂的IK分解为6个典型几何子问题,通过与其他几何对象相交的圆来求解。子问题在所有情况下都能有效地解决,包括在连续情况下,有时在解不存在的最小二乘意义下。这种连续性要求意味着IK- geo可以找到所有IK解,包括奇异解,有时还包括最小二乘解。三轴相交或平行的机器人以封闭形式求解。所有其他商用机器人至少有一对相交或平行轴,并通过搜索一个关节角来求解。完全一般机器人通过搜索两个关节角来求解。根据末端执行器在一个关节的切线半角上的位姿,搜索解可以转换为一个由三个或四个多项式组成的系统。与IKFast和MATLAB Robotics Toolbox IK求解器的比较表明,IK- geo具有更快的计算速度,可以求解更多类型的机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

IK-Geo: Unified robot inverse kinematics using subproblem decomposition

IK-Geo: Unified robot inverse kinematics using subproblem decomposition
We present IK-Geo, a highly capable and computationally efficient open-source robot inverse kinematics (IK) solver. In this unifying approach, IK for any 6-DOF all-revolute (6R) manipulator is decomposed into six canonical geometric subproblems solved by intersecting circles with other geometric objects. Subproblems are efficiently solved in all cases including in a continuous and sometimes least-squares sense when a solution does not exist. This continuity requirement means IK-Geo finds all IK solutions including singular solutions and sometimes least-squares solutions. Robots with three intersecting or parallel axes are solved in closed form. All other commercially available robots have at least one pair of intersecting or parallel axes and are solved by searching over one joint angle. Fully general robots are solved by searching over two joint angles. Search solutions may be converted to a system of three or four polynomials in terms of the end effector pose in the tangent half-angle of one joint. A comparison with IKFast and the MATLAB Robotics Toolbox IK solver demonstrates that IK-Geo has faster computation and can solve more classes of robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信