{"title":"冲击载荷作用下机动空间系绳网刚柔耦合动力学与构型稳定性","authors":"Mani Kakavand, Zheng H. Zhu","doi":"10.1016/j.actaastro.2025.02.031","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the configuration stability and rigid–flexible coupled dynamics of maneuverable space tether nets under impact loads. To analyze the complex 3D maneuvers of the net, a geometric mechanics framework is developed, incorporating the rigid–flexible coupling between wave propagation in the net and the attitude dynamics of maneuvering satellites attached to its corners. A coordinate-free representation in Lie group is derived for the satellites’ attitude dynamics on <span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. Equilibrium states, modal shapes, and chaotic behavior of the tether net are examined using the geometric Jacobian method, which reveals the coexistence of stiff tether dynamics and slow satellite attitude motions, leading to extreme disparities in time scales and makes numerical analysis challenging by conventional integration schemes. To solve the problem, a structure-preserving integrator is derived to accurately analyze the chaotic behavior of the net over extended periods. Dynamic responses to impact loads are analyzed under two initial conditions: (i) a slack net and (ii) a net tensioned by satellite control forces and torques. Numerical results reveal significant coupling effects between net deformation and satellite attitude motion, and even minor perturbations may lead to chaotic responses of the net indicated by Lyapunov exponents. Moreover, the pre-tension of the net by control forces from satellites can effectively suppress chaotic behaviors, leading to more stable configuration and controlled maneuvering. These findings offer critical insights into configuration stability and dynamics of maneuverable space tether nets, which will enable the effective control strategy development to suppress chaos and enhance net’s maneuverability in three-dimensional space.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"232 ","pages":"Pages 114-131"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigid-flexible coupled dynamics and configuration stability of maneuverable space tether net under impact loads\",\"authors\":\"Mani Kakavand, Zheng H. Zhu\",\"doi\":\"10.1016/j.actaastro.2025.02.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the configuration stability and rigid–flexible coupled dynamics of maneuverable space tether nets under impact loads. To analyze the complex 3D maneuvers of the net, a geometric mechanics framework is developed, incorporating the rigid–flexible coupling between wave propagation in the net and the attitude dynamics of maneuvering satellites attached to its corners. A coordinate-free representation in Lie group is derived for the satellites’ attitude dynamics on <span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. Equilibrium states, modal shapes, and chaotic behavior of the tether net are examined using the geometric Jacobian method, which reveals the coexistence of stiff tether dynamics and slow satellite attitude motions, leading to extreme disparities in time scales and makes numerical analysis challenging by conventional integration schemes. To solve the problem, a structure-preserving integrator is derived to accurately analyze the chaotic behavior of the net over extended periods. Dynamic responses to impact loads are analyzed under two initial conditions: (i) a slack net and (ii) a net tensioned by satellite control forces and torques. Numerical results reveal significant coupling effects between net deformation and satellite attitude motion, and even minor perturbations may lead to chaotic responses of the net indicated by Lyapunov exponents. Moreover, the pre-tension of the net by control forces from satellites can effectively suppress chaotic behaviors, leading to more stable configuration and controlled maneuvering. These findings offer critical insights into configuration stability and dynamics of maneuverable space tether nets, which will enable the effective control strategy development to suppress chaos and enhance net’s maneuverability in three-dimensional space.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"232 \",\"pages\":\"Pages 114-131\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576525001122\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525001122","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Rigid-flexible coupled dynamics and configuration stability of maneuverable space tether net under impact loads
This paper investigates the configuration stability and rigid–flexible coupled dynamics of maneuverable space tether nets under impact loads. To analyze the complex 3D maneuvers of the net, a geometric mechanics framework is developed, incorporating the rigid–flexible coupling between wave propagation in the net and the attitude dynamics of maneuvering satellites attached to its corners. A coordinate-free representation in Lie group is derived for the satellites’ attitude dynamics on . Equilibrium states, modal shapes, and chaotic behavior of the tether net are examined using the geometric Jacobian method, which reveals the coexistence of stiff tether dynamics and slow satellite attitude motions, leading to extreme disparities in time scales and makes numerical analysis challenging by conventional integration schemes. To solve the problem, a structure-preserving integrator is derived to accurately analyze the chaotic behavior of the net over extended periods. Dynamic responses to impact loads are analyzed under two initial conditions: (i) a slack net and (ii) a net tensioned by satellite control forces and torques. Numerical results reveal significant coupling effects between net deformation and satellite attitude motion, and even minor perturbations may lead to chaotic responses of the net indicated by Lyapunov exponents. Moreover, the pre-tension of the net by control forces from satellites can effectively suppress chaotic behaviors, leading to more stable configuration and controlled maneuvering. These findings offer critical insights into configuration stability and dynamics of maneuverable space tether nets, which will enable the effective control strategy development to suppress chaos and enhance net’s maneuverability in three-dimensional space.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.