氘化和氢化等规聚丁烯-1结晶动力学、结晶和熔融线

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Xintong Zhao, Ninghua He, Ying Lu* and Yongfeng Men*, 
{"title":"氘化和氢化等规聚丁烯-1结晶动力学、结晶和熔融线","authors":"Xintong Zhao,&nbsp;Ninghua He,&nbsp;Ying Lu* and Yongfeng Men*,&nbsp;","doi":"10.1021/acs.macromol.4c0298810.1021/acs.macromol.4c02988","DOIUrl":null,"url":null,"abstract":"<p >The kinetics of crystallization, lamellar long period, and melting temperatures (<i>T</i><sub>m</sub>) of hydrogenous isotactic polybutene-1 (hPB-1) and its fully deuterated counterpart (deuterated isotactic polybutene-1, dPB-1) with similar molecular weight at different isothermal crystallization temperatures (<i>T</i><sub>c</sub>) were investigated by means of fast scanning chip calorimetry and synchrotron microfocus small-angle X-ray scattering techniques. The Hoffman–Weeks plot where <i>T</i><sub>m</sub> was plotted as a function of <i>T</i><sub>c</sub> was used to determine the equilibrium melting point by extrapolating the data to <i>T</i><sub>m</sub> = <i>T</i><sub>c</sub>. Moreover, following the Gibbs–Thomoson equation and Strobl’s multistage crystallization model, the melting line and crystallization line where <i>T</i><sub>m</sub> or <i>T</i><sub>c</sub> is plotted as a function of inversed lamellar long period (1/<i>d</i><sub>ac</sub>) were constructed to determine the equilibrium melting temperature and equilibrium crystallization temperature by extrapolating the corresponding lines to infinite lamellar long period. The hPB-1 displays faster crystallization rates across the entire temperature range, suggesting a higher supercooling driving its crystallization than in dPB-1. However, hPB-1 possesses a lower equilibrium melting point/temperature but a higher equilibrium crystallization temperature than dPB-1. This peculiar isotope effect on the crystallization behavior of isotactic polybutene-1 provides a unique example supporting the crystallization mechanism proposed by Strobl where the supercooling with respect to the equilibrium crystallization temperature determines the crystallization kinetics.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 5","pages":"2546–2554 2546–2554"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallization Kinetics, Crystallization and Melting Lines of Deuterated and Hydrogenous Isotactic Polybutene-1\",\"authors\":\"Xintong Zhao,&nbsp;Ninghua He,&nbsp;Ying Lu* and Yongfeng Men*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c0298810.1021/acs.macromol.4c02988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The kinetics of crystallization, lamellar long period, and melting temperatures (<i>T</i><sub>m</sub>) of hydrogenous isotactic polybutene-1 (hPB-1) and its fully deuterated counterpart (deuterated isotactic polybutene-1, dPB-1) with similar molecular weight at different isothermal crystallization temperatures (<i>T</i><sub>c</sub>) were investigated by means of fast scanning chip calorimetry and synchrotron microfocus small-angle X-ray scattering techniques. The Hoffman–Weeks plot where <i>T</i><sub>m</sub> was plotted as a function of <i>T</i><sub>c</sub> was used to determine the equilibrium melting point by extrapolating the data to <i>T</i><sub>m</sub> = <i>T</i><sub>c</sub>. Moreover, following the Gibbs–Thomoson equation and Strobl’s multistage crystallization model, the melting line and crystallization line where <i>T</i><sub>m</sub> or <i>T</i><sub>c</sub> is plotted as a function of inversed lamellar long period (1/<i>d</i><sub>ac</sub>) were constructed to determine the equilibrium melting temperature and equilibrium crystallization temperature by extrapolating the corresponding lines to infinite lamellar long period. The hPB-1 displays faster crystallization rates across the entire temperature range, suggesting a higher supercooling driving its crystallization than in dPB-1. However, hPB-1 possesses a lower equilibrium melting point/temperature but a higher equilibrium crystallization temperature than dPB-1. This peculiar isotope effect on the crystallization behavior of isotactic polybutene-1 provides a unique example supporting the crystallization mechanism proposed by Strobl where the supercooling with respect to the equilibrium crystallization temperature determines the crystallization kinetics.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 5\",\"pages\":\"2546–2554 2546–2554\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02988\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02988","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

采用快速扫描芯片量热法和同步微聚焦小角度x射线散射技术,研究了不同等温结晶温度(Tc)下氢化等规聚丁烯-1 (hPB-1)及其分子量相近的完全氘化产物(氘化等规聚丁烯-1,dPB-1)的结晶动力学、片层长周期和熔融温度(Tm)。霍夫曼-周图中,Tm作为Tc的函数被绘制,通过外推数据到Tm = Tc来确定平衡熔点。此外,根据Gibbs-Thomoson方程和Strobl的多阶段结晶模型,构建了以Tm或Tc为反片层长周期(1/dac)函数的熔化线和结晶线,通过外推无限片层长周期来确定平衡熔化温度和平衡结晶温度。hPB-1在整个温度范围内显示出更快的结晶速率,这表明与dPB-1相比,hPB-1具有更高的过冷性。与dPB-1相比,hPB-1具有较低的平衡熔点/温度,但较高的平衡结晶温度。这种同位素对等规聚丁烯-1结晶行为的特殊影响提供了一个独特的例子,支持strobel提出的结晶机制,其中相对于平衡结晶温度的过冷决定了结晶动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystallization Kinetics, Crystallization and Melting Lines of Deuterated and Hydrogenous Isotactic Polybutene-1

Crystallization Kinetics, Crystallization and Melting Lines of Deuterated and Hydrogenous Isotactic Polybutene-1

The kinetics of crystallization, lamellar long period, and melting temperatures (Tm) of hydrogenous isotactic polybutene-1 (hPB-1) and its fully deuterated counterpart (deuterated isotactic polybutene-1, dPB-1) with similar molecular weight at different isothermal crystallization temperatures (Tc) were investigated by means of fast scanning chip calorimetry and synchrotron microfocus small-angle X-ray scattering techniques. The Hoffman–Weeks plot where Tm was plotted as a function of Tc was used to determine the equilibrium melting point by extrapolating the data to Tm = Tc. Moreover, following the Gibbs–Thomoson equation and Strobl’s multistage crystallization model, the melting line and crystallization line where Tm or Tc is plotted as a function of inversed lamellar long period (1/dac) were constructed to determine the equilibrium melting temperature and equilibrium crystallization temperature by extrapolating the corresponding lines to infinite lamellar long period. The hPB-1 displays faster crystallization rates across the entire temperature range, suggesting a higher supercooling driving its crystallization than in dPB-1. However, hPB-1 possesses a lower equilibrium melting point/temperature but a higher equilibrium crystallization temperature than dPB-1. This peculiar isotope effect on the crystallization behavior of isotactic polybutene-1 provides a unique example supporting the crystallization mechanism proposed by Strobl where the supercooling with respect to the equilibrium crystallization temperature determines the crystallization kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信