对比学习使表位重叠预测靶向抗体发现。

Clinton M Holt, Alexis K Janke, Parastoo B Amlashi, Toma M Marinov, Ivelin S Georgiev
{"title":"对比学习使表位重叠预测靶向抗体发现。","authors":"Clinton M Holt, Alexis K Janke, Parastoo B Amlashi, Toma M Marinov, Ivelin S Georgiev","doi":"10.1101/2025.02.25.640114","DOIUrl":null,"url":null,"abstract":"<p><p>Computational epitope prediction remains an unmet need for therapeutic antibody development. We present three complementary approaches for predicting epitope relationships from antibody amino acid sequences. First, we analyze ~18 million antibody pairs targeting ~250 protein families and establish that a threshold of >70% CDRH3 sequence identity among antibodies sharing both heavy and light chain V-genes reliably predicts overlapping-epitope antibody pairs. Next, we develop a supervised contrastive fine-tuning framework for antibody large language models which results in embeddings that better correlate with epitope information than those from pre-trained models. Applying this contrastive learning approach to SARS-CoV-2 receptor binding domain antibodies, we achieve 82.7% balanced accuracy in distinguishing same-epitope versus different-epitope antibody pairs and demonstrate the ability to predict relative levels of structural overlap from learning on functional epitope bins (Spearman ρ = 0.25). Finally, we create AbLang-PDB, a generalized model for predicting overlapping-epitope antibodies for a broad range of protein families. AbLang-PDB achieves five-fold improvement in average precision for predicting overlapping-epitope antibody pairs compared to sequence-based methods, and effectively predicts the amount of epitope overlap among overlapping-epitope pairs (ρ = 0.81). In an antibody discovery campaign searching for overlapping-epitope antibodies to the HIV-1 broadly neutralizing antibody 8ANC195, 70% of computationally selected candidates demonstrated HIV-1 specificity, with 50% showing competitive binding with 8ANC195. Together, the computational models presented here provide powerful tools for epitope-targeted antibody discovery, while demonstrating the efficacy of contrastive learning for improving epitope-representation.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888244/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrastive Learning Enables Epitope Overlap Predictions for Targeted Antibody Discovery.\",\"authors\":\"Clinton M Holt, Alexis K Janke, Parastoo B Amlashi, Toma M Marinov, Ivelin S Georgiev\",\"doi\":\"10.1101/2025.02.25.640114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational epitope prediction remains an unmet need for therapeutic antibody development. We present three complementary approaches for predicting epitope relationships from antibody amino acid sequences. First, we analyze ~18 million antibody pairs targeting ~250 protein families and establish that a threshold of >70% CDRH3 sequence identity among antibodies sharing both heavy and light chain V-genes reliably predicts overlapping-epitope antibody pairs. Next, we develop a supervised contrastive fine-tuning framework for antibody large language models which results in embeddings that better correlate with epitope information than those from pre-trained models. Applying this contrastive learning approach to SARS-CoV-2 receptor binding domain antibodies, we achieve 82.7% balanced accuracy in distinguishing same-epitope versus different-epitope antibody pairs and demonstrate the ability to predict relative levels of structural overlap from learning on functional epitope bins (Spearman ρ = 0.25). Finally, we create AbLang-PDB, a generalized model for predicting overlapping-epitope antibodies for a broad range of protein families. AbLang-PDB achieves five-fold improvement in average precision for predicting overlapping-epitope antibody pairs compared to sequence-based methods, and effectively predicts the amount of epitope overlap among overlapping-epitope pairs (ρ = 0.81). In an antibody discovery campaign searching for overlapping-epitope antibodies to the HIV-1 broadly neutralizing antibody 8ANC195, 70% of computationally selected candidates demonstrated HIV-1 specificity, with 50% showing competitive binding with 8ANC195. Together, the computational models presented here provide powerful tools for epitope-targeted antibody discovery, while demonstrating the efficacy of contrastive learning for improving epitope-representation.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.02.25.640114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.25.640114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算表位预测仍然是治疗性抗体开发的一个未满足的需求。我们提出了三种互补的方法来预测抗体氨基酸序列的表位关系。首先,我们分析了针对~ 250个蛋白家族的~ 1800万对抗体,并确定在共享重链和轻链v基因的抗体中,CDRH3序列一致性的阈值为bb0 70%,可以可靠地预测重叠的表位抗体对。接下来,我们为抗体大语言模型开发了一个有监督的对比微调框架,其结果是嵌入比预训练模型更好地与表位信息相关。将这种对比学习方法应用于SARS-CoV-2受体结合域抗体,我们在区分相同表位与不同表位抗体对方面达到了82.7%的平衡准确度,并证明了通过学习功能表位箱来预测结构重叠的相对水平的能力(Spearman ρ = 0.25)。最后,我们创建了AbLang-PDB,这是一个用于预测广泛蛋白质家族的重叠表位抗体的广义模型。与基于序列的方法相比,AbLang-PDB预测重叠表位抗体对的平均精度提高了5倍,并有效预测了重叠表位对之间的表位重叠量(ρ = 0.81)。在寻找HIV-1广泛中和抗体8ANC195的重叠表位抗体的抗体发现活动中,70%的计算选择的候选物显示出HIV-1特异性,50%的候选物显示出与8ANC195的竞争性结合。总之,本文提出的计算模型为发现表位靶向抗体提供了强大的工具,同时证明了对比学习在改善表位表示方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive Learning Enables Epitope Overlap Predictions for Targeted Antibody Discovery.

Computational epitope prediction remains an unmet need for therapeutic antibody development. We present three complementary approaches for predicting epitope relationships from antibody amino acid sequences. First, we analyze ~18 million antibody pairs targeting ~250 protein families and establish that a threshold of >70% CDRH3 sequence identity among antibodies sharing both heavy and light chain V-genes reliably predicts overlapping-epitope antibody pairs. Next, we develop a supervised contrastive fine-tuning framework for antibody large language models which results in embeddings that better correlate with epitope information than those from pre-trained models. Applying this contrastive learning approach to SARS-CoV-2 receptor binding domain antibodies, we achieve 82.7% balanced accuracy in distinguishing same-epitope versus different-epitope antibody pairs and demonstrate the ability to predict relative levels of structural overlap from learning on functional epitope bins (Spearman ρ = 0.25). Finally, we create AbLang-PDB, a generalized model for predicting overlapping-epitope antibodies for a broad range of protein families. AbLang-PDB achieves five-fold improvement in average precision for predicting overlapping-epitope antibody pairs compared to sequence-based methods, and effectively predicts the amount of epitope overlap among overlapping-epitope pairs (ρ = 0.81). In an antibody discovery campaign searching for overlapping-epitope antibodies to the HIV-1 broadly neutralizing antibody 8ANC195, 70% of computationally selected candidates demonstrated HIV-1 specificity, with 50% showing competitive binding with 8ANC195. Together, the computational models presented here provide powerful tools for epitope-targeted antibody discovery, while demonstrating the efficacy of contrastive learning for improving epitope-representation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信