评估日本FDG-PET报告中恶性淋巴瘤Lugano分类的大型语言模型。

Rintaro Ito, Keita Kato, Kosuke Nanataki, Yumi Abe, Hiroshi Ogawa, Ryogo Minamimoto, Katsuhiko Kato, Toshiaki Taoka, Shinji Naganawa
{"title":"评估日本FDG-PET报告中恶性淋巴瘤Lugano分类的大型语言模型。","authors":"Rintaro Ito, Keita Kato, Kosuke Nanataki, Yumi Abe, Hiroshi Ogawa, Ryogo Minamimoto, Katsuhiko Kato, Toshiaki Taoka, Shinji Naganawa","doi":"10.1186/s41824-025-00246-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study evaluates the performance of four large language models (LLMs) in classifying malignant lymphoma stages using the Lugano classification from free-text FDG-PET reports in Japanese Specifically, we assess GPT-4o, Claude 3.5 Sonnet, Llama 3 70B, and Gemma 2 27B in their ability interpret unstructured radiology texts.</p><p><strong>Materials and methods: </strong>In a retrospective single-center study, 80 patients who underwent staging FDG-PET/CT for malignant lymphoma were included. The \"Findings\" sections of their reports were analyzed without pre-processing. Each LLM assigned Lugano stages based on these reports. Performance was compared to reference standard stages determined by expert radiologists. Statistical analyses involved overall accuracy, weighted kappa for agreement.</p><p><strong>Results: </strong>GPT-4o achieved the highest accuracy at 75% (60/80 cases) with substantial agreement (weighted kappa κ = 0.801). Claude 3.5 Sonnet had 61.3% accuracy (49/80, κ = 0.763). Gemma 2 27B and Llama 3 70B showed accuracies of 58.8% and 57.5%, respectively, all indicating substantial agreement.</p><p><strong>Conclusion: </strong>GPT-4o outperformed other LLMs in assigning Lugano classification from Japanese FDG-PET free-text reports. This demonstrated the potential of advanced LLMs to interpret clinical texts. While the immediate clinical utility of automatically predicting a Lugano stage from an existing report may be limited, these results highlight the value of LLMs for understanding and standardizing free-text radiology data.</p>","PeriodicalId":519909,"journal":{"name":"EJNMMI reports","volume":"9 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing large language models for Lugano classification of malignant lymphoma in Japanese FDG-PET reports.\",\"authors\":\"Rintaro Ito, Keita Kato, Kosuke Nanataki, Yumi Abe, Hiroshi Ogawa, Ryogo Minamimoto, Katsuhiko Kato, Toshiaki Taoka, Shinji Naganawa\",\"doi\":\"10.1186/s41824-025-00246-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study evaluates the performance of four large language models (LLMs) in classifying malignant lymphoma stages using the Lugano classification from free-text FDG-PET reports in Japanese Specifically, we assess GPT-4o, Claude 3.5 Sonnet, Llama 3 70B, and Gemma 2 27B in their ability interpret unstructured radiology texts.</p><p><strong>Materials and methods: </strong>In a retrospective single-center study, 80 patients who underwent staging FDG-PET/CT for malignant lymphoma were included. The \\\"Findings\\\" sections of their reports were analyzed without pre-processing. Each LLM assigned Lugano stages based on these reports. Performance was compared to reference standard stages determined by expert radiologists. Statistical analyses involved overall accuracy, weighted kappa for agreement.</p><p><strong>Results: </strong>GPT-4o achieved the highest accuracy at 75% (60/80 cases) with substantial agreement (weighted kappa κ = 0.801). Claude 3.5 Sonnet had 61.3% accuracy (49/80, κ = 0.763). Gemma 2 27B and Llama 3 70B showed accuracies of 58.8% and 57.5%, respectively, all indicating substantial agreement.</p><p><strong>Conclusion: </strong>GPT-4o outperformed other LLMs in assigning Lugano classification from Japanese FDG-PET free-text reports. This demonstrated the potential of advanced LLMs to interpret clinical texts. While the immediate clinical utility of automatically predicting a Lugano stage from an existing report may be limited, these results highlight the value of LLMs for understanding and standardizing free-text radiology data.</p>\",\"PeriodicalId\":519909,\"journal\":{\"name\":\"EJNMMI reports\",\"volume\":\"9 1\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41824-025-00246-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41824-025-00246-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究评估了四种大型语言模型(LLMs)在使用Lugano分类日语自由文本FDG-PET报告中的恶性淋巴瘤分期方面的表现。具体而言,我们评估了gpt - 40、Claude 3.5 Sonnet、Llama 370b和Gemma 227b解释非结构化放射学文本的能力。材料和方法:在一项回顾性单中心研究中,纳入了80例接受FDG-PET/CT分期诊断恶性淋巴瘤的患者。他们报告的“调查结果”部分未经预处理就进行了分析。每个法学硕士根据这些报告分配卢加诺阶段。将表现与放射科专家确定的参考标准阶段进行比较。统计分析包括总体准确性,加权kappa的一致性。结果:gpt - 40的准确率最高,为75%(60/80例),一致性很高(加权kappa κ = 0.801)。Claude 3.5 Sonnet的准确率为61.3% (49/80,κ = 0.763)。Gemma 227b和Llama 370b的准确率分别为58.8%和57.5%,两者基本一致。结论:gpt - 40在从日本FDG-PET自由文本报告中分配Lugano分类方面优于其他LLMs。这证明了高级法学硕士在解释临床文献方面的潜力。虽然从现有报告中自动预测卢加诺分期的直接临床应用可能有限,但这些结果突出了llm在理解和标准化自由文本放射学数据方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing large language models for Lugano classification of malignant lymphoma in Japanese FDG-PET reports.

Purpose: This study evaluates the performance of four large language models (LLMs) in classifying malignant lymphoma stages using the Lugano classification from free-text FDG-PET reports in Japanese Specifically, we assess GPT-4o, Claude 3.5 Sonnet, Llama 3 70B, and Gemma 2 27B in their ability interpret unstructured radiology texts.

Materials and methods: In a retrospective single-center study, 80 patients who underwent staging FDG-PET/CT for malignant lymphoma were included. The "Findings" sections of their reports were analyzed without pre-processing. Each LLM assigned Lugano stages based on these reports. Performance was compared to reference standard stages determined by expert radiologists. Statistical analyses involved overall accuracy, weighted kappa for agreement.

Results: GPT-4o achieved the highest accuracy at 75% (60/80 cases) with substantial agreement (weighted kappa κ = 0.801). Claude 3.5 Sonnet had 61.3% accuracy (49/80, κ = 0.763). Gemma 2 27B and Llama 3 70B showed accuracies of 58.8% and 57.5%, respectively, all indicating substantial agreement.

Conclusion: GPT-4o outperformed other LLMs in assigning Lugano classification from Japanese FDG-PET free-text reports. This demonstrated the potential of advanced LLMs to interpret clinical texts. While the immediate clinical utility of automatically predicting a Lugano stage from an existing report may be limited, these results highlight the value of LLMs for understanding and standardizing free-text radiology data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信