基于自我注意的上下文调制改善神经系统识别。

ArXiv Pub Date : 2025-02-28
Isaac Lin, Tianye Wang, Shang Gao, Shiming Tang, Tai Sing Lee
{"title":"基于自我注意的上下文调制改善神经系统识别。","authors":"Isaac Lin, Tianye Wang, Shang Gao, Shiming Tang, Tai Sing Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) have been shown to be state-of-the-art models for visual cortical neurons. Cortical neurons in the primary visual cortex are sensitive to contextual information mediated by extensive horizontal and feedback connections. Standard CNNs integrate global contextual information to model contextual modulation via two mechanisms: successive convolutions and a fully connected readout layer. In this paper, we find that self-attention (SA), an implementation of non-local network mechanisms, can improve neural response predictions over parameter-matched CNNs in two key metrics: tuning curve correlation and peak tuning. We introduce peak tuning as a metric to evaluate a model's ability to capture a neuron's top feature preference. We factorize networks to assess each context mechanism, revealing that information in the local receptive field is most important for modeling overall tuning, but surround information is critically necessary for characterizing the tuning peak. We find that self-attention can replace posterior spatial-integration convolutions when learned incrementally, and is further enhanced in the presence of a fully connected readout layer, suggesting that the two context mechanisms are complementary. Finally, we find that decomposing receptive field learning and contextual modulation learning in an incremental manner may be an effective and robust mechanism for learning surround-center interactions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-Attention-Based Contextual Modulation Improves Neural System Identification.\",\"authors\":\"Isaac Lin, Tianye Wang, Shang Gao, Shiming Tang, Tai Sing Lee\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Convolutional neural networks (CNNs) have been shown to be state-of-the-art models for visual cortical neurons. Cortical neurons in the primary visual cortex are sensitive to contextual information mediated by extensive horizontal and feedback connections. Standard CNNs integrate global contextual information to model contextual modulation via two mechanisms: successive convolutions and a fully connected readout layer. In this paper, we find that self-attention (SA), an implementation of non-local network mechanisms, can improve neural response predictions over parameter-matched CNNs in two key metrics: tuning curve correlation and peak tuning. We introduce peak tuning as a metric to evaluate a model's ability to capture a neuron's top feature preference. We factorize networks to assess each context mechanism, revealing that information in the local receptive field is most important for modeling overall tuning, but surround information is critically necessary for characterizing the tuning peak. We find that self-attention can replace posterior spatial-integration convolutions when learned incrementally, and is further enhanced in the presence of a fully connected readout layer, suggesting that the two context mechanisms are complementary. Finally, we find that decomposing receptive field learning and contextual modulation learning in an incremental manner may be an effective and robust mechanism for learning surround-center interactions.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)已被证明是视觉皮层神经元的最先进的模型。初级视觉皮层皮层神经元对广泛的水平和反馈连接介导的上下文信息敏感。标准cnn通过连续卷积和全连接读出层两种机制集成全局上下文信息来模拟上下文调制。在本文中,我们发现自注意(SA)作为非局部网络机制的一种实现,可以在两个关键指标上改进参数匹配cnn的神经响应预测:调谐曲线相关性和峰值调谐。我们引入峰值调谐作为一个度量来评估模型捕捉神经元的顶级特征偏好的能力。我们将网络分解以评估每种上下文机制,揭示局部接受野中的信息对于建模整体调优最重要,但周围信息对于表征调优峰值至关重要。我们发现,自我注意在增量学习时可以取代后向空间整合卷积,并且在完全连接的读出层存在时进一步增强,这表明两种上下文机制是互补的。最后,我们发现以增量方式分解感受野学习和情境调制学习可能是一种有效且稳健的学习周围中心相互作用的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Attention-Based Contextual Modulation Improves Neural System Identification.

Convolutional neural networks (CNNs) have been shown to be state-of-the-art models for visual cortical neurons. Cortical neurons in the primary visual cortex are sensitive to contextual information mediated by extensive horizontal and feedback connections. Standard CNNs integrate global contextual information to model contextual modulation via two mechanisms: successive convolutions and a fully connected readout layer. In this paper, we find that self-attention (SA), an implementation of non-local network mechanisms, can improve neural response predictions over parameter-matched CNNs in two key metrics: tuning curve correlation and peak tuning. We introduce peak tuning as a metric to evaluate a model's ability to capture a neuron's top feature preference. We factorize networks to assess each context mechanism, revealing that information in the local receptive field is most important for modeling overall tuning, but surround information is critically necessary for characterizing the tuning peak. We find that self-attention can replace posterior spatial-integration convolutions when learned incrementally, and is further enhanced in the presence of a fully connected readout layer, suggesting that the two context mechanisms are complementary. Finally, we find that decomposing receptive field learning and contextual modulation learning in an incremental manner may be an effective and robust mechanism for learning surround-center interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信