验证描述肿瘤生长和治疗反应的数学模型的预测。

ArXiv Pub Date : 2025-02-26
Guillermo Lorenzo, David A Hormuth, Chengyue Wu, Graham Pash, Anirban Chaudhuri, Ernesto A B F Lima, Lois C Okereke, Reshmi Patel, Karen Willcox, Thomas E Yankeelov
{"title":"验证描述肿瘤生长和治疗反应的数学模型的预测。","authors":"Guillermo Lorenzo, David A Hormuth, Chengyue Wu, Graham Pash, Anirban Chaudhuri, Ernesto A B F Lima, Lois C Okereke, Reshmi Patel, Karen Willcox, Thomas E Yankeelov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in methods to interrogate tumor biology, the observational and population-based approach of classical cancer research and clinical oncology does not enable anticipation of tumor outcomes to hasten the discovery of cancer mechanisms and personalize disease management. To address these limitations, individualized cancer forecasts have been shown to predict tumor growth and therapeutic response, inform treatment optimization, and guide experimental efforts. These predictions are obtained <i>via</i> computer simulations of mathematical models that are constrained with data from a patient's cancer and experiments. This book chapter addresses the validation of these mathematical models to forecast tumor growth and treatment response. We start with an overview of mathematical modeling frameworks, model selection techniques, and fundamental metrics. We then describe the usual strategies employed to validate cancer forecasts in preclinical and clinical scenarios. Finally, we discuss existing barriers in validating these predictions along with potential strategies to address them.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888553/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validating the predictions of mathematical models describing tumor growth and treatment response.\",\"authors\":\"Guillermo Lorenzo, David A Hormuth, Chengyue Wu, Graham Pash, Anirban Chaudhuri, Ernesto A B F Lima, Lois C Okereke, Reshmi Patel, Karen Willcox, Thomas E Yankeelov\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite advances in methods to interrogate tumor biology, the observational and population-based approach of classical cancer research and clinical oncology does not enable anticipation of tumor outcomes to hasten the discovery of cancer mechanisms and personalize disease management. To address these limitations, individualized cancer forecasts have been shown to predict tumor growth and therapeutic response, inform treatment optimization, and guide experimental efforts. These predictions are obtained <i>via</i> computer simulations of mathematical models that are constrained with data from a patient's cancer and experiments. This book chapter addresses the validation of these mathematical models to forecast tumor growth and treatment response. We start with an overview of mathematical modeling frameworks, model selection techniques, and fundamental metrics. We then describe the usual strategies employed to validate cancer forecasts in preclinical and clinical scenarios. Finally, we discuss existing barriers in validating these predictions along with potential strategies to address them.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888553/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管研究肿瘤生物学的方法有所进步,但经典癌症研究和临床肿瘤学的观察和基于人群的方法并不能预测肿瘤结果,从而加快发现癌症机制和个性化疾病管理。为了解决这些局限性,个体化癌症预测已被证明可以预测肿瘤生长和治疗反应,为治疗优化提供信息,并指导实验工作。这些预测是通过计算机模拟数学模型得到的,这些模型受到患者癌症和实验数据的限制。这本书的章节地址验证这些数学模型预测肿瘤生长和治疗反应。我们从数学建模框架、模型选择技术和基本度量的概述开始。然后,我们描述了在临床前和临床情景中验证癌症预测的常用策略。最后,我们讨论了验证这些预测的现有障碍以及解决这些障碍的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validating the predictions of mathematical models describing tumor growth and treatment response.

Despite advances in methods to interrogate tumor biology, the observational and population-based approach of classical cancer research and clinical oncology does not enable anticipation of tumor outcomes to hasten the discovery of cancer mechanisms and personalize disease management. To address these limitations, individualized cancer forecasts have been shown to predict tumor growth and therapeutic response, inform treatment optimization, and guide experimental efforts. These predictions are obtained via computer simulations of mathematical models that are constrained with data from a patient's cancer and experiments. This book chapter addresses the validation of these mathematical models to forecast tumor growth and treatment response. We start with an overview of mathematical modeling frameworks, model selection techniques, and fundamental metrics. We then describe the usual strategies employed to validate cancer forecasts in preclinical and clinical scenarios. Finally, we discuss existing barriers in validating these predictions along with potential strategies to address them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信