揭开视觉关系推理的几何学。

ArXiv Pub Date : 2025-02-24
Jiaqi Shang, Gabriel Kreiman, Haim Sompolinsky
{"title":"揭开视觉关系推理的几何学。","authors":"Jiaqi Shang, Gabriel Kreiman, Haim Sompolinsky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Humans and other animals readily generalize abstract relations, such as recognizing <i>constant</i> in shape or color, whereas neural networks struggle. To investigate how neural networks generalize abstract relations, we introduce <i>SimplifiedRPM</i>, a novel benchmark for systematic evaluation. In parallel, we conduct human experiments to benchmark relational difficulty, enabling direct model-human comparisons. Testing four architectures-ResNet-50, Vision Transformer, Wild Relation Network, and Scattering Compositional Learner (SCL)-we find that SCL best aligns with human behavior and generalizes best. Building on a geometric theory of neural representations, we show representational geometries that predict generalization. Layer-wise analysis reveals distinct relational reasoning strategies across models and suggests a trade-off where unseen rule representations compress into training-shaped subspaces. Guided by our geometric perspective, we propose and evaluate SNRloss, a novel objective balancing representation geometry. Our findings offer geometric insights into how neural networks generalize abstract relations, paving the way for more human-like visual reasoning in AI.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888560/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Geometry of Visual Relational Reasoning.\",\"authors\":\"Jiaqi Shang, Gabriel Kreiman, Haim Sompolinsky\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans and other animals readily generalize abstract relations, such as recognizing <i>constant</i> in shape or color, whereas neural networks struggle. To investigate how neural networks generalize abstract relations, we introduce <i>SimplifiedRPM</i>, a novel benchmark for systematic evaluation. In parallel, we conduct human experiments to benchmark relational difficulty, enabling direct model-human comparisons. Testing four architectures-ResNet-50, Vision Transformer, Wild Relation Network, and Scattering Compositional Learner (SCL)-we find that SCL best aligns with human behavior and generalizes best. Building on a geometric theory of neural representations, we show representational geometries that predict generalization. Layer-wise analysis reveals distinct relational reasoning strategies across models and suggests a trade-off where unseen rule representations compress into training-shaped subspaces. Guided by our geometric perspective, we propose and evaluate SNRloss, a novel objective balancing representation geometry. Our findings offer geometric insights into how neural networks generalize abstract relations, paving the way for more human-like visual reasoning in AI.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888560/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类和其他动物很容易概括抽象关系,比如识别形状或颜色的常量,而神经网络则很难。为了研究神经网络如何泛化抽象关系,我们引入了一种新的系统评价基准simplfiedrpm。与此同时,我们进行人类实验来测试关系难度,从而实现直接的模型与人类的比较。通过测试四种架构——ResNet-50、Vision Transformer、Wild Relation Network和Scattering composition Learner (SCL)——我们发现SCL最符合人类行为,泛化效果最好。基于神经表征的几何理论,我们展示了预测泛化的表征几何。分层分析揭示了模型之间不同的关系推理策略,并提出了一种权衡,即将看不见的规则表示压缩到训练形状的子空间中。在我们的几何视角的指导下,我们提出并评估信噪比损失,一种新的客观平衡表示几何。我们的发现为神经网络如何概括抽象关系提供了几何见解,为人工智能中更像人类的视觉推理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the Geometry of Visual Relational Reasoning.

Humans and other animals readily generalize abstract relations, such as recognizing constant in shape or color, whereas neural networks struggle. To investigate how neural networks generalize abstract relations, we introduce SimplifiedRPM, a novel benchmark for systematic evaluation. In parallel, we conduct human experiments to benchmark relational difficulty, enabling direct model-human comparisons. Testing four architectures-ResNet-50, Vision Transformer, Wild Relation Network, and Scattering Compositional Learner (SCL)-we find that SCL best aligns with human behavior and generalizes best. Building on a geometric theory of neural representations, we show representational geometries that predict generalization. Layer-wise analysis reveals distinct relational reasoning strategies across models and suggests a trade-off where unseen rule representations compress into training-shaped subspaces. Guided by our geometric perspective, we propose and evaluate SNRloss, a novel objective balancing representation geometry. Our findings offer geometric insights into how neural networks generalize abstract relations, paving the way for more human-like visual reasoning in AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信