使用集合展开的基于会话的推荐的自回归模型。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2734
Tianhao Yu, Xianghong Zhou, Xinrong Deng
{"title":"使用集合展开的基于会话的推荐的自回归模型。","authors":"Tianhao Yu, Xianghong Zhou, Xinrong Deng","doi":"10.7717/peerj-cs.2734","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid growth of internet technologies, session-based recommendation systems have emerged as a key paradigm in delivering personalized recommendations by capturing users' dynamic and short-term preferences. Traditional methods predominantly rely on modeling the sequential order of user interactions, deep learning approaches like recurrent neural networks and Transformer architectures. However, these sequence-based models often struggle in scenarios where the order of interactions is ambiguous or unreliable, limiting their real-world applicability. To address this challenge, we propose a novel session-based recommendation model, Deep Set Session-based Recommendation (DSETRec), which approaches the problem from a set-based perspective, eliminating dependence on the interaction sequence. By conceptualizing session data as unordered sets, our model captures the coupling relationships and co-occurrence patterns between items, enhancing prediction accuracy in settings where sequential information is either unavailable or noisy. The model is implemented using a deep autoregressive framework that iteratively masks known elements within a session, predicting and reconstructing additional items based on set data characteristics. Extensive experiments on benchmark datasets show that DSETRec achieves outperforms state-of-the-art baselines. DSETRec achieves a 13.2% and 11.85% improvement in P@20 and MRR@20, respectively, over its sequence-based variant on Yoochoose. Additionally, DSETRec generalizes effectively across both further short and long sessions. These results highlight the robustness of the set-based approach in capturing unordered interaction patterns and adapting to diverse session lengths. This finding provides a foundation for developing more flexible and generalized session-based recommendation systems.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2734"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autoregressive models for session-based recommendations using set expansion.\",\"authors\":\"Tianhao Yu, Xianghong Zhou, Xinrong Deng\",\"doi\":\"10.7717/peerj-cs.2734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid growth of internet technologies, session-based recommendation systems have emerged as a key paradigm in delivering personalized recommendations by capturing users' dynamic and short-term preferences. Traditional methods predominantly rely on modeling the sequential order of user interactions, deep learning approaches like recurrent neural networks and Transformer architectures. However, these sequence-based models often struggle in scenarios where the order of interactions is ambiguous or unreliable, limiting their real-world applicability. To address this challenge, we propose a novel session-based recommendation model, Deep Set Session-based Recommendation (DSETRec), which approaches the problem from a set-based perspective, eliminating dependence on the interaction sequence. By conceptualizing session data as unordered sets, our model captures the coupling relationships and co-occurrence patterns between items, enhancing prediction accuracy in settings where sequential information is either unavailable or noisy. The model is implemented using a deep autoregressive framework that iteratively masks known elements within a session, predicting and reconstructing additional items based on set data characteristics. Extensive experiments on benchmark datasets show that DSETRec achieves outperforms state-of-the-art baselines. DSETRec achieves a 13.2% and 11.85% improvement in P@20 and MRR@20, respectively, over its sequence-based variant on Yoochoose. Additionally, DSETRec generalizes effectively across both further short and long sessions. These results highlight the robustness of the set-based approach in capturing unordered interaction patterns and adapting to diverse session lengths. This finding provides a foundation for developing more flexible and generalized session-based recommendation systems.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2734\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2734\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2734","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着互联网技术的快速发展,基于会话的推荐系统已经成为通过捕捉用户动态和短期偏好来提供个性化推荐的关键范例。传统方法主要依赖于对用户交互的顺序顺序进行建模,以及像循环神经网络和Transformer架构这样的深度学习方法。然而,这些基于序列的模型经常在交互顺序不明确或不可靠的场景中挣扎,从而限制了它们在现实世界中的适用性。为了解决这一挑战,我们提出了一种新的基于会话的推荐模型——深度集基于会话的推荐(Deep Set session-based recommendation, DSETRec),它从基于集的角度来解决问题,消除了对交互序列的依赖。通过将会话数据概念化为无序集,我们的模型捕获了项目之间的耦合关系和共现模式,从而提高了在顺序信息不可用或有噪声的情况下的预测准确性。该模型使用深度自回归框架实现,该框架迭代地掩盖会话中的已知元素,根据集数据特征预测和重建附加项。在基准数据集上进行的大量实验表明,DSETRec的性能优于最先进的基线。与Yoochoose上基于序列的变体相比,DSETRec在P@20和MRR@20上分别实现了13.2%和11.85%的改进。此外,DSETRec在进一步的短期和长期会话中都有效地泛化。这些结果突出了基于集合的方法在捕获无序交互模式和适应不同会话长度方面的鲁棒性。这一发现为开发更灵活和通用的基于会话的推荐系统提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoregressive models for session-based recommendations using set expansion.

With the rapid growth of internet technologies, session-based recommendation systems have emerged as a key paradigm in delivering personalized recommendations by capturing users' dynamic and short-term preferences. Traditional methods predominantly rely on modeling the sequential order of user interactions, deep learning approaches like recurrent neural networks and Transformer architectures. However, these sequence-based models often struggle in scenarios where the order of interactions is ambiguous or unreliable, limiting their real-world applicability. To address this challenge, we propose a novel session-based recommendation model, Deep Set Session-based Recommendation (DSETRec), which approaches the problem from a set-based perspective, eliminating dependence on the interaction sequence. By conceptualizing session data as unordered sets, our model captures the coupling relationships and co-occurrence patterns between items, enhancing prediction accuracy in settings where sequential information is either unavailable or noisy. The model is implemented using a deep autoregressive framework that iteratively masks known elements within a session, predicting and reconstructing additional items based on set data characteristics. Extensive experiments on benchmark datasets show that DSETRec achieves outperforms state-of-the-art baselines. DSETRec achieves a 13.2% and 11.85% improvement in P@20 and MRR@20, respectively, over its sequence-based variant on Yoochoose. Additionally, DSETRec generalizes effectively across both further short and long sessions. These results highlight the robustness of the set-based approach in capturing unordered interaction patterns and adapting to diverse session lengths. This finding provides a foundation for developing more flexible and generalized session-based recommendation systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信