一种用于物联网轨迹预测的用户嵌入式时间注意力神经网络。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2681
Dongdong Feng, Siyao Li, Yong Xiang, Jiahuan Zheng
{"title":"一种用于物联网轨迹预测的用户嵌入式时间注意力神经网络。","authors":"Dongdong Feng, Siyao Li, Yong Xiang, Jiahuan Zheng","doi":"10.7717/peerj-cs.2681","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, sequential recommendation systems have garnered significant research interest, driven by their potential applications in personalized product recommendations. In this article, we seek to explicitly model an algorithm based on Internet of Things (IoT) data to predict the next cell reached by the user equipment (UE). This algorithm exploits UE embedding and cell embedding combining the visit time interval information, and uses sliding window sampling to process more UE trajectory data. Furthermore, we use the attention mechanism, removed the query matrix operation and the attention mask, to obtain key information in data and reduce the number of parameters to speed up training. In the prediction layer, combining the positive and negative sampling and computing cross entropy loss also provides assistance to increase the precision and dependability of the entire model. We take the six adjacent cells of the current cell as candidates due to the limitation of the space problem, from which we predict the next destination cell of track movement. Extensive empirical study shows the recall of our algorithm reaches 0.5766, which infers the optimal result and high performance of our model.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2681"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888941/pdf/","citationCount":"0","resultStr":"{\"title\":\"A user-embedded temporal attention neural network for IoT trajectories prediction.\",\"authors\":\"Dongdong Feng, Siyao Li, Yong Xiang, Jiahuan Zheng\",\"doi\":\"10.7717/peerj-cs.2681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, sequential recommendation systems have garnered significant research interest, driven by their potential applications in personalized product recommendations. In this article, we seek to explicitly model an algorithm based on Internet of Things (IoT) data to predict the next cell reached by the user equipment (UE). This algorithm exploits UE embedding and cell embedding combining the visit time interval information, and uses sliding window sampling to process more UE trajectory data. Furthermore, we use the attention mechanism, removed the query matrix operation and the attention mask, to obtain key information in data and reduce the number of parameters to speed up training. In the prediction layer, combining the positive and negative sampling and computing cross entropy loss also provides assistance to increase the precision and dependability of the entire model. We take the six adjacent cells of the current cell as candidates due to the limitation of the space problem, from which we predict the next destination cell of track movement. Extensive empirical study shows the recall of our algorithm reaches 0.5766, which infers the optimal result and high performance of our model.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2681\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888941/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2681\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2681","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,顺序推荐系统由于其在个性化产品推荐中的潜在应用而获得了重要的研究兴趣。在本文中,我们试图明确地建立基于物联网(IoT)数据的算法模型,以预测用户设备(UE)到达的下一个小区。该算法结合访问时间间隔信息,利用UE嵌入和单元嵌入技术,利用滑动窗口采样技术处理更多的UE轨迹数据。此外,我们利用注意机制,去掉查询矩阵运算和注意掩码,获取数据中的关键信息,减少参数个数,加快训练速度。在预测层,结合正负采样和计算交叉熵损失也有助于提高整个模型的精度和可靠性。由于空间问题的限制,我们将当前单元格的6个相邻单元格作为候选单元格,以此来预测轨迹运动的下一个目标单元格。大量的实证研究表明,我们的算法的召回率达到0.5766,这推断了我们的模型的最优结果和高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A user-embedded temporal attention neural network for IoT trajectories prediction.

Over the past two decades, sequential recommendation systems have garnered significant research interest, driven by their potential applications in personalized product recommendations. In this article, we seek to explicitly model an algorithm based on Internet of Things (IoT) data to predict the next cell reached by the user equipment (UE). This algorithm exploits UE embedding and cell embedding combining the visit time interval information, and uses sliding window sampling to process more UE trajectory data. Furthermore, we use the attention mechanism, removed the query matrix operation and the attention mask, to obtain key information in data and reduce the number of parameters to speed up training. In the prediction layer, combining the positive and negative sampling and computing cross entropy loss also provides assistance to increase the precision and dependability of the entire model. We take the six adjacent cells of the current cell as candidates due to the limitation of the space problem, from which we predict the next destination cell of track movement. Extensive empirical study shows the recall of our algorithm reaches 0.5766, which infers the optimal result and high performance of our model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信