多任务蛇形优化算法求解全局优化及平面运动臂控制问题。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2688
Qingrui Li, Yongquan Zhou, Qifang Luo
{"title":"多任务蛇形优化算法求解全局优化及平面运动臂控制问题。","authors":"Qingrui Li, Yongquan Zhou, Qifang Luo","doi":"10.7717/peerj-cs.2688","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-task optimization (MTO) algorithms aim to simultaneously solve multiple optimization tasks. Addressing issues such as limited optimization precision and high computational costs in existing MTO algorithms, this article proposes a multi-task snake optimization (MTSO) algorithm. The MTSO algorithm operates in two phases: first, independently handling each optimization problem; second, transferring knowledge. Knowledge transfer is determined by the probability of knowledge transfer and the selection probability of elite individuals. Based on this decision, the algorithm either transfers elite knowledge from other tasks or updates the current task through self-perturbation. Experimental results indicate that, compared to other advanced MTO algorithms, the proposed algorithm achieves the most accurate solutions on multitask benchmark functions, the five-task and 10-task planar kinematic arm control problems, the multitask robot gripper problem, and the multitask car side-impact design problem. The code and data for this article can be obtained from: https://doi.org/10.5281/zenodo.14197420.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2688"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888922/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-task snake optimization algorithm for global optimization and planar kinematic arm control problem.\",\"authors\":\"Qingrui Li, Yongquan Zhou, Qifang Luo\",\"doi\":\"10.7717/peerj-cs.2688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-task optimization (MTO) algorithms aim to simultaneously solve multiple optimization tasks. Addressing issues such as limited optimization precision and high computational costs in existing MTO algorithms, this article proposes a multi-task snake optimization (MTSO) algorithm. The MTSO algorithm operates in two phases: first, independently handling each optimization problem; second, transferring knowledge. Knowledge transfer is determined by the probability of knowledge transfer and the selection probability of elite individuals. Based on this decision, the algorithm either transfers elite knowledge from other tasks or updates the current task through self-perturbation. Experimental results indicate that, compared to other advanced MTO algorithms, the proposed algorithm achieves the most accurate solutions on multitask benchmark functions, the five-task and 10-task planar kinematic arm control problems, the multitask robot gripper problem, and the multitask car side-impact design problem. The code and data for this article can be obtained from: https://doi.org/10.5281/zenodo.14197420.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2688\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2688\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2688","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多任务优化(MTO)算法旨在同时解决多个优化任务。针对现有多任务蛇形优化算法优化精度有限、计算成本高的问题,提出了一种多任务蛇形优化算法。MTSO算法分两个阶段运行:一是独立处理每个优化问题;第二,知识转移。知识转移是由知识转移的概率和精英个体的选择概率决定的。在此基础上,算法要么从其他任务中转移精英知识,要么通过自摄更新当前任务。实验结果表明,与其他先进的MTO算法相比,该算法在多任务基准函数、五任务和十任务平面运动臂控制问题、多任务机器人夹持器问题和多任务汽车侧碰撞设计问题上都获得了最精确的解。本文的代码和数据可从https://doi.org/10.5281/zenodo.14197420获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-task snake optimization algorithm for global optimization and planar kinematic arm control problem.

Multi-task optimization (MTO) algorithms aim to simultaneously solve multiple optimization tasks. Addressing issues such as limited optimization precision and high computational costs in existing MTO algorithms, this article proposes a multi-task snake optimization (MTSO) algorithm. The MTSO algorithm operates in two phases: first, independently handling each optimization problem; second, transferring knowledge. Knowledge transfer is determined by the probability of knowledge transfer and the selection probability of elite individuals. Based on this decision, the algorithm either transfers elite knowledge from other tasks or updates the current task through self-perturbation. Experimental results indicate that, compared to other advanced MTO algorithms, the proposed algorithm achieves the most accurate solutions on multitask benchmark functions, the five-task and 10-task planar kinematic arm control problems, the multitask robot gripper problem, and the multitask car side-impact design problem. The code and data for this article can be obtained from: https://doi.org/10.5281/zenodo.14197420.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信