M2巨噬细胞来源的外泌体对瘢痕形成过程中尿道纤维化和狭窄的影响。

IF 6.2 Q1 IMMUNOLOGY
ImmunoTargets and Therapy Pub Date : 2025-03-04 eCollection Date: 2025-01-01 DOI:10.2147/ITT.S500499
Xiang Ren, Zhixian Wang, Jing Wang, Xing Li, Huizhi Wei, Chang Liu, Shiliang Liu, Yunpeng Zhu, Chunxiang Feng, Yisheng Yin, Yiqun Tian, Minglong Wu, Xiaoyong Zeng
{"title":"M2巨噬细胞来源的外泌体对瘢痕形成过程中尿道纤维化和狭窄的影响。","authors":"Xiang Ren, Zhixian Wang, Jing Wang, Xing Li, Huizhi Wei, Chang Liu, Shiliang Liu, Yunpeng Zhu, Chunxiang Feng, Yisheng Yin, Yiqun Tian, Minglong Wu, Xiaoyong Zeng","doi":"10.2147/ITT.S500499","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Macrophages are highly plastic cells, and macrophage-derived exosomes (M-Exos) have been implicated in inflammation-related pathophysiologies, such as tissue injury and fibrosis repair. This study aimed to investigate the possible effects of M-Exos on the initiation and development of urethral fibrosis and stricture after injury, and to elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>In this study, we used time-tracking immunofluorescence staining for M1 and M2 macrophage markers to characterize sequential properties in the site of injured urethra. Next, we harvested these exosomes from different macrophages to co-culture with fibroblasts to further confirm the role of exosome-mediated M2 macrophage-fibroblast communication. Then, high-throughput micro-RNA (miRNA) sequencing was performed to detect the candidate exosomal miRNA and its target gene. Furthermore, fibroblasts were transfected with mRFP-GFP-LC3 plasmid to detect the autophagy role of SIRT1 in the urethral fibroblasts fibrogenesis.</p><p><strong>Results: </strong>Here we found that M2-polarized macrophages triggered and dominated the fibrotic scene, purified exosomes from M2 macrophages exacerbated urethral fibroblast fibrogenesis, and the inhibition of exosome secretion abolished fibroblast fibrogenesis. Moreover, miR-34a-5p, which is highly enriched and packaged within M2-Exos, can be transferred from M2 macrophages into urethral fibroblasts, resulting in deterioration of proliferation and fibrogenesis. Mechanistically, M2-Exos miR-34a-5p could directly interact with the 3'-UTR of SIRT1, thereby suppressing SIRT1 expression in fibroblasts, leading to the blockage of autophagosome-lysosome fusion to impair urethral fibroblast autophagy flux and further exacerbate fibrogenesis. More importantly, repression of miR-34a-5p in M2-Exos mitigated-urethral strictures in rats with damaged urethra.</p><p><strong>Conclusion: </strong>M2 macrophage-derived exosomes miR-34a-5p could aggravate the development of urethral fibrosis and stricture by blocking autophagosome-lysosome fusion in urethral fibroblasts and further accelerating fibrogenesis by directly targeting SIRT1, suggesting that M2-Exo miR-34a-5p and SIRT1 could serve as promising therapeutic targets for urethral stricture.</p>","PeriodicalId":30986,"journal":{"name":"ImmunoTargets and Therapy","volume":"14 ","pages":"151-173"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890085/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effects of M2 Macrophages-Derived Exosomes on Urethral Fibrosis and Stricture in Scar Formation.\",\"authors\":\"Xiang Ren, Zhixian Wang, Jing Wang, Xing Li, Huizhi Wei, Chang Liu, Shiliang Liu, Yunpeng Zhu, Chunxiang Feng, Yisheng Yin, Yiqun Tian, Minglong Wu, Xiaoyong Zeng\",\"doi\":\"10.2147/ITT.S500499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Macrophages are highly plastic cells, and macrophage-derived exosomes (M-Exos) have been implicated in inflammation-related pathophysiologies, such as tissue injury and fibrosis repair. This study aimed to investigate the possible effects of M-Exos on the initiation and development of urethral fibrosis and stricture after injury, and to elucidate the underlying mechanisms.</p><p><strong>Methods: </strong>In this study, we used time-tracking immunofluorescence staining for M1 and M2 macrophage markers to characterize sequential properties in the site of injured urethra. Next, we harvested these exosomes from different macrophages to co-culture with fibroblasts to further confirm the role of exosome-mediated M2 macrophage-fibroblast communication. Then, high-throughput micro-RNA (miRNA) sequencing was performed to detect the candidate exosomal miRNA and its target gene. Furthermore, fibroblasts were transfected with mRFP-GFP-LC3 plasmid to detect the autophagy role of SIRT1 in the urethral fibroblasts fibrogenesis.</p><p><strong>Results: </strong>Here we found that M2-polarized macrophages triggered and dominated the fibrotic scene, purified exosomes from M2 macrophages exacerbated urethral fibroblast fibrogenesis, and the inhibition of exosome secretion abolished fibroblast fibrogenesis. Moreover, miR-34a-5p, which is highly enriched and packaged within M2-Exos, can be transferred from M2 macrophages into urethral fibroblasts, resulting in deterioration of proliferation and fibrogenesis. Mechanistically, M2-Exos miR-34a-5p could directly interact with the 3'-UTR of SIRT1, thereby suppressing SIRT1 expression in fibroblasts, leading to the blockage of autophagosome-lysosome fusion to impair urethral fibroblast autophagy flux and further exacerbate fibrogenesis. More importantly, repression of miR-34a-5p in M2-Exos mitigated-urethral strictures in rats with damaged urethra.</p><p><strong>Conclusion: </strong>M2 macrophage-derived exosomes miR-34a-5p could aggravate the development of urethral fibrosis and stricture by blocking autophagosome-lysosome fusion in urethral fibroblasts and further accelerating fibrogenesis by directly targeting SIRT1, suggesting that M2-Exo miR-34a-5p and SIRT1 could serve as promising therapeutic targets for urethral stricture.</p>\",\"PeriodicalId\":30986,\"journal\":{\"name\":\"ImmunoTargets and Therapy\",\"volume\":\"14 \",\"pages\":\"151-173\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoTargets and Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/ITT.S500499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoTargets and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/ITT.S500499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:巨噬细胞是高度可塑性的细胞,巨噬细胞来源的外泌体(M-Exos)参与炎症相关的病理生理,如组织损伤和纤维化修复。本研究旨在探讨M-Exos在损伤后尿道纤维化和狭窄发生发展中的可能作用,并阐明其机制。方法:在本研究中,我们采用时间跟踪免疫荧光法对M1和M2巨噬细胞标记物进行染色,以表征损伤尿道部位的序列特性。接下来,我们从不同的巨噬细胞中收集这些外泌体,与成纤维细胞共培养,以进一步证实外泌体介导的M2巨噬细胞-成纤维细胞通讯的作用。然后进行高通量微rna (miRNA)测序,检测候选外泌体miRNA及其靶基因。进一步用mRFP-GFP-LC3质粒转染成纤维细胞,检测SIRT1在尿道成纤维细胞成纤维过程中的自噬作用。结果:我们发现M2极化巨噬细胞触发并主导了纤维化场景,纯化的M2巨噬细胞外泌体加剧了尿道成纤维细胞的纤维形成,抑制外泌体分泌可消除成纤维细胞的纤维形成。此外,高度富集并包装在M2- exos内的miR-34a-5p可以从M2巨噬细胞转移到尿道成纤维细胞中,导致增殖和成纤维恶化。在机制上,M2-Exos miR-34a-5p可直接与SIRT1的3'-UTR相互作用,从而抑制成纤维细胞中SIRT1的表达,导致自噬体-溶酶体融合受阻,损害尿道成纤维细胞自噬通量,进一步加剧纤维形成。更重要的是,在M2-Exos中抑制miR-34a-5p可减轻尿道损伤大鼠的尿道狭窄。结论:M2巨噬细胞来源的外泌体miR-34a-5p可通过直接靶向SIRT1,阻断尿道成纤维细胞中自噬体-溶酶体融合,进一步加速纤维生成,从而加重尿道纤维化和狭窄的发展,提示M2- exo miR-34a-5p和SIRT1可作为治疗尿道狭窄的有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of M2 Macrophages-Derived Exosomes on Urethral Fibrosis and Stricture in Scar Formation.

Background: Macrophages are highly plastic cells, and macrophage-derived exosomes (M-Exos) have been implicated in inflammation-related pathophysiologies, such as tissue injury and fibrosis repair. This study aimed to investigate the possible effects of M-Exos on the initiation and development of urethral fibrosis and stricture after injury, and to elucidate the underlying mechanisms.

Methods: In this study, we used time-tracking immunofluorescence staining for M1 and M2 macrophage markers to characterize sequential properties in the site of injured urethra. Next, we harvested these exosomes from different macrophages to co-culture with fibroblasts to further confirm the role of exosome-mediated M2 macrophage-fibroblast communication. Then, high-throughput micro-RNA (miRNA) sequencing was performed to detect the candidate exosomal miRNA and its target gene. Furthermore, fibroblasts were transfected with mRFP-GFP-LC3 plasmid to detect the autophagy role of SIRT1 in the urethral fibroblasts fibrogenesis.

Results: Here we found that M2-polarized macrophages triggered and dominated the fibrotic scene, purified exosomes from M2 macrophages exacerbated urethral fibroblast fibrogenesis, and the inhibition of exosome secretion abolished fibroblast fibrogenesis. Moreover, miR-34a-5p, which is highly enriched and packaged within M2-Exos, can be transferred from M2 macrophages into urethral fibroblasts, resulting in deterioration of proliferation and fibrogenesis. Mechanistically, M2-Exos miR-34a-5p could directly interact with the 3'-UTR of SIRT1, thereby suppressing SIRT1 expression in fibroblasts, leading to the blockage of autophagosome-lysosome fusion to impair urethral fibroblast autophagy flux and further exacerbate fibrogenesis. More importantly, repression of miR-34a-5p in M2-Exos mitigated-urethral strictures in rats with damaged urethra.

Conclusion: M2 macrophage-derived exosomes miR-34a-5p could aggravate the development of urethral fibrosis and stricture by blocking autophagosome-lysosome fusion in urethral fibroblasts and further accelerating fibrogenesis by directly targeting SIRT1, suggesting that M2-Exo miR-34a-5p and SIRT1 could serve as promising therapeutic targets for urethral stricture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.50
自引率
0.00%
发文量
7
审稿时长
16 weeks
期刊介绍: Immuno Targets and Therapy is an international, peer-reviewed open access journal focusing on the immunological basis of diseases, potential targets for immune based therapy and treatment protocols employed to improve patient management. Basic immunology and physiology of the immune system in health, and disease will be also covered.In addition, the journal will focus on the impact of management programs and new therapeutic agents and protocols on patient perspectives such as quality of life, adherence and satisfaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信