{"title":"利用基于注意力的长短期记忆预测淀粉样蛋白。","authors":"Zhuowen Li","doi":"10.7717/peerj-cs.2660","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is one of the genetically inherited neurodegenerative disorders that mostly occur when people get old. It can be recognized by severe memory impairment in the late stage, affecting cognitive function and general daily living. Reliable evidence confirms that the enhanced symptoms of AD are linked to the accumulation of amyloid proteins. The dense population of amyloid proteins forms insoluble fibrillar structures, causing significant pathological impacts in various tissues. Understanding amyloid protein's mechanisms and identifying them at an early stage plays an essential role in treating AD as well as prevalent amyloid-related diseases. Recently, although several machine learning methods proposed for amyloid protein identification have shown promising results, most of them have not yet fully exploited the sequence information of the amyloid proteins. In this study, we develop a computational model for <i>in silico</i> identification of amyloid proteins using bidirectional long short-term memory in combination with an attention mechanism. In the testing phase, our findings showed that the model developed by our proposed method outperformed those developed by state-of-the-art methods with an area under the receiver operating characteristic curve of 0.9126.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2660"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888867/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting amyloid proteins using attention-based long short-term memory.\",\"authors\":\"Zhuowen Li\",\"doi\":\"10.7717/peerj-cs.2660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is one of the genetically inherited neurodegenerative disorders that mostly occur when people get old. It can be recognized by severe memory impairment in the late stage, affecting cognitive function and general daily living. Reliable evidence confirms that the enhanced symptoms of AD are linked to the accumulation of amyloid proteins. The dense population of amyloid proteins forms insoluble fibrillar structures, causing significant pathological impacts in various tissues. Understanding amyloid protein's mechanisms and identifying them at an early stage plays an essential role in treating AD as well as prevalent amyloid-related diseases. Recently, although several machine learning methods proposed for amyloid protein identification have shown promising results, most of them have not yet fully exploited the sequence information of the amyloid proteins. In this study, we develop a computational model for <i>in silico</i> identification of amyloid proteins using bidirectional long short-term memory in combination with an attention mechanism. In the testing phase, our findings showed that the model developed by our proposed method outperformed those developed by state-of-the-art methods with an area under the receiver operating characteristic curve of 0.9126.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2660\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888867/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2660\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2660","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting amyloid proteins using attention-based long short-term memory.
Alzheimer's disease (AD) is one of the genetically inherited neurodegenerative disorders that mostly occur when people get old. It can be recognized by severe memory impairment in the late stage, affecting cognitive function and general daily living. Reliable evidence confirms that the enhanced symptoms of AD are linked to the accumulation of amyloid proteins. The dense population of amyloid proteins forms insoluble fibrillar structures, causing significant pathological impacts in various tissues. Understanding amyloid protein's mechanisms and identifying them at an early stage plays an essential role in treating AD as well as prevalent amyloid-related diseases. Recently, although several machine learning methods proposed for amyloid protein identification have shown promising results, most of them have not yet fully exploited the sequence information of the amyloid proteins. In this study, we develop a computational model for in silico identification of amyloid proteins using bidirectional long short-term memory in combination with an attention mechanism. In the testing phase, our findings showed that the model developed by our proposed method outperformed those developed by state-of-the-art methods with an area under the receiver operating characteristic curve of 0.9126.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.