Bhavya S Doshi, Caroline A Markmann, Noelle Novak, Silvia Juarez Rojas, Robert Davidson, Julia Q Chau, Wei Wang, Sean Carrig, Cristina Martos Rus, Benjamin J Samelson-Jones, Juliana C Small, Vijay G Bhoj, Lindsey A George
{"title":"利用cd19靶向免疫调节根除AAV中和抗体。","authors":"Bhavya S Doshi, Caroline A Markmann, Noelle Novak, Silvia Juarez Rojas, Robert Davidson, Julia Q Chau, Wei Wang, Sean Carrig, Cristina Martos Rus, Benjamin J Samelson-Jones, Juliana C Small, Vijay G Bhoj, Lindsey A George","doi":"10.1016/j.ymthe.2025.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>Neutralizing antibodies (NAbs) against adeno-associated virus (AAV) represent a significant obstacle to the efficacy of systemic recombinant AAV vector administration or re-administration. While there are some promising preclinical immunomodulation strategies in development, insights into which B cell subsets and compartments maintain persistent AAV NAb may define the optimal eradication strategy. Given the limited success of CD20-directed monotherapy in previous studies, we hypothesized that CD19-directed approaches that extend targeting into the plasma cell compartments may improve AAV NAb eradication. We tested this approach in mice using chimeric antigen receptor T (CAR-T) cells or monoclonal antibodies (mAbs). We observed that combination mAbs targeting CD19, CD22, CD20, or B220 in mice did not eliminate tissue-resident B cells and, correspondingly, did not deplete pre-existing high titer AAV8 NAb. In contrast, CD19 CAR-T therapy eliminated peripheral and tissue-resident B cells and plasma cells and resulted in a marked reduction or eradication of high titer AAV8 NAb that permitted successful transgene expression following systemic AAV8 re-administration in mice. This successful therapeutic approach in mice identifies the population and location of B cells necessary to reduce or eradicate AAV NAb sufficiently to permit successful transgene expression with systemic AAV vector administration.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3073-3085"},"PeriodicalIF":12.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of CD19-targeted immune modulation to eradicate AAV-neutralizing antibodies.\",\"authors\":\"Bhavya S Doshi, Caroline A Markmann, Noelle Novak, Silvia Juarez Rojas, Robert Davidson, Julia Q Chau, Wei Wang, Sean Carrig, Cristina Martos Rus, Benjamin J Samelson-Jones, Juliana C Small, Vijay G Bhoj, Lindsey A George\",\"doi\":\"10.1016/j.ymthe.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutralizing antibodies (NAbs) against adeno-associated virus (AAV) represent a significant obstacle to the efficacy of systemic recombinant AAV vector administration or re-administration. While there are some promising preclinical immunomodulation strategies in development, insights into which B cell subsets and compartments maintain persistent AAV NAb may define the optimal eradication strategy. Given the limited success of CD20-directed monotherapy in previous studies, we hypothesized that CD19-directed approaches that extend targeting into the plasma cell compartments may improve AAV NAb eradication. We tested this approach in mice using chimeric antigen receptor T (CAR-T) cells or monoclonal antibodies (mAbs). We observed that combination mAbs targeting CD19, CD22, CD20, or B220 in mice did not eliminate tissue-resident B cells and, correspondingly, did not deplete pre-existing high titer AAV8 NAb. In contrast, CD19 CAR-T therapy eliminated peripheral and tissue-resident B cells and plasma cells and resulted in a marked reduction or eradication of high titer AAV8 NAb that permitted successful transgene expression following systemic AAV8 re-administration in mice. This successful therapeutic approach in mice identifies the population and location of B cells necessary to reduce or eradicate AAV NAb sufficiently to permit successful transgene expression with systemic AAV vector administration.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"3073-3085\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.03.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Use of CD19-targeted immune modulation to eradicate AAV-neutralizing antibodies.
Neutralizing antibodies (NAbs) against adeno-associated virus (AAV) represent a significant obstacle to the efficacy of systemic recombinant AAV vector administration or re-administration. While there are some promising preclinical immunomodulation strategies in development, insights into which B cell subsets and compartments maintain persistent AAV NAb may define the optimal eradication strategy. Given the limited success of CD20-directed monotherapy in previous studies, we hypothesized that CD19-directed approaches that extend targeting into the plasma cell compartments may improve AAV NAb eradication. We tested this approach in mice using chimeric antigen receptor T (CAR-T) cells or monoclonal antibodies (mAbs). We observed that combination mAbs targeting CD19, CD22, CD20, or B220 in mice did not eliminate tissue-resident B cells and, correspondingly, did not deplete pre-existing high titer AAV8 NAb. In contrast, CD19 CAR-T therapy eliminated peripheral and tissue-resident B cells and plasma cells and resulted in a marked reduction or eradication of high titer AAV8 NAb that permitted successful transgene expression following systemic AAV8 re-administration in mice. This successful therapeutic approach in mice identifies the population and location of B cells necessary to reduce or eradicate AAV NAb sufficiently to permit successful transgene expression with systemic AAV vector administration.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.