Alison O Cudmore, Galaxia M Rodriguez, Vincent Maranda, Salar Farokhi Boroujeni, Humaira Murshed, Elizabeth A Macdonald, Melanie Grondin, Kenneth Garson, Kathy Matuszewska, Jean-Simon Diallo, James J Petrik, Barbara C Vanderhyden
{"title":"特异性基因突变影响卵巢癌溶瘤病毒的化疗耐药性和治疗效果。","authors":"Alison O Cudmore, Galaxia M Rodriguez, Vincent Maranda, Salar Farokhi Boroujeni, Humaira Murshed, Elizabeth A Macdonald, Melanie Grondin, Kenneth Garson, Kathy Matuszewska, Jean-Simon Diallo, James J Petrik, Barbara C Vanderhyden","doi":"10.1158/1535-7163.MCT-24-0906","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer, and those affected are in urgent need of new therapeutic strategies. Standard treatment is surgery followed by taxane- and platinum-based chemotherapy. However, the rate of relapse is high, and the 5-year survival is only 45%. Oncolytic viruses (OV) are a promising approach to EOC therapy through remodeling the immune composition of the tumor microenvironment. Treatment response in EOC tumors can differ based on the presence of key tumorigenic mutations. This study evaluated the impact of specific tumor mutations on the response to the current standard-of-care carboplatin, two promising OV candidates VSVΔM51 and MG1, an infected cell vaccine (ICV-MG1) regimen, and the antiangiogenic drug Fc3TSR. Mice with tumors harboring constitutive K-Ras activation showed an enhanced response to carboplatin and VSVΔM51 treatment. Additionally, VSVΔM51 treatment prolonged survival of syngeneic mice bearing tumors with mutations in Pten and Kras, Pten and Trp53, or Trp53 and Brca2 with increased activation of CD4+ and CD8+ T lymphocytes in the peritoneal tumor microenvironment. To enhance OV potency, an MG1-based infected cell vaccine inducing the expression of IL21 or IL15 + IL21 was developed and found to enable strong and long-lasting antitumoral immunity in two carboplatin-refractory syngeneic models, ID8-Trp53-/- and STOSE. VSVΔM51 combined with the antiangiogenic Fc3TSR enhanced efficacy in the ID8 model. In summary, OV-based immunotherapy has shown promise in diverse murine models of EOC-bearing clinically relevant mutations, thus laying the foundation for developing new OV-based strategies to target a large spectrum of EOC genotypes.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1626-1639"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Specific Genetic Mutations Impact Chemotherapy Resistance and Therapeutic Efficacy of Oncolytic Viruses in Ovarian Cancer.\",\"authors\":\"Alison O Cudmore, Galaxia M Rodriguez, Vincent Maranda, Salar Farokhi Boroujeni, Humaira Murshed, Elizabeth A Macdonald, Melanie Grondin, Kenneth Garson, Kathy Matuszewska, Jean-Simon Diallo, James J Petrik, Barbara C Vanderhyden\",\"doi\":\"10.1158/1535-7163.MCT-24-0906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer, and those affected are in urgent need of new therapeutic strategies. Standard treatment is surgery followed by taxane- and platinum-based chemotherapy. However, the rate of relapse is high, and the 5-year survival is only 45%. Oncolytic viruses (OV) are a promising approach to EOC therapy through remodeling the immune composition of the tumor microenvironment. Treatment response in EOC tumors can differ based on the presence of key tumorigenic mutations. This study evaluated the impact of specific tumor mutations on the response to the current standard-of-care carboplatin, two promising OV candidates VSVΔM51 and MG1, an infected cell vaccine (ICV-MG1) regimen, and the antiangiogenic drug Fc3TSR. Mice with tumors harboring constitutive K-Ras activation showed an enhanced response to carboplatin and VSVΔM51 treatment. Additionally, VSVΔM51 treatment prolonged survival of syngeneic mice bearing tumors with mutations in Pten and Kras, Pten and Trp53, or Trp53 and Brca2 with increased activation of CD4+ and CD8+ T lymphocytes in the peritoneal tumor microenvironment. To enhance OV potency, an MG1-based infected cell vaccine inducing the expression of IL21 or IL15 + IL21 was developed and found to enable strong and long-lasting antitumoral immunity in two carboplatin-refractory syngeneic models, ID8-Trp53-/- and STOSE. VSVΔM51 combined with the antiangiogenic Fc3TSR enhanced efficacy in the ID8 model. In summary, OV-based immunotherapy has shown promise in diverse murine models of EOC-bearing clinically relevant mutations, thus laying the foundation for developing new OV-based strategies to target a large spectrum of EOC genotypes.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"1626-1639\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-24-0906\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0906","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Specific Genetic Mutations Impact Chemotherapy Resistance and Therapeutic Efficacy of Oncolytic Viruses in Ovarian Cancer.
Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer, and those affected are in urgent need of new therapeutic strategies. Standard treatment is surgery followed by taxane- and platinum-based chemotherapy. However, the rate of relapse is high, and the 5-year survival is only 45%. Oncolytic viruses (OV) are a promising approach to EOC therapy through remodeling the immune composition of the tumor microenvironment. Treatment response in EOC tumors can differ based on the presence of key tumorigenic mutations. This study evaluated the impact of specific tumor mutations on the response to the current standard-of-care carboplatin, two promising OV candidates VSVΔM51 and MG1, an infected cell vaccine (ICV-MG1) regimen, and the antiangiogenic drug Fc3TSR. Mice with tumors harboring constitutive K-Ras activation showed an enhanced response to carboplatin and VSVΔM51 treatment. Additionally, VSVΔM51 treatment prolonged survival of syngeneic mice bearing tumors with mutations in Pten and Kras, Pten and Trp53, or Trp53 and Brca2 with increased activation of CD4+ and CD8+ T lymphocytes in the peritoneal tumor microenvironment. To enhance OV potency, an MG1-based infected cell vaccine inducing the expression of IL21 or IL15 + IL21 was developed and found to enable strong and long-lasting antitumoral immunity in two carboplatin-refractory syngeneic models, ID8-Trp53-/- and STOSE. VSVΔM51 combined with the antiangiogenic Fc3TSR enhanced efficacy in the ID8 model. In summary, OV-based immunotherapy has shown promise in diverse murine models of EOC-bearing clinically relevant mutations, thus laying the foundation for developing new OV-based strategies to target a large spectrum of EOC genotypes.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.