细菌捕食者和BALOs:生长方案和与线粒体的关系。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Methods in cell biology Pub Date : 2025-01-01 Epub Date: 2024-08-24 DOI:10.1016/bs.mcb.2024.07.003
Valerio Iebba
{"title":"细菌捕食者和BALOs:生长方案和与线粒体的关系。","authors":"Valerio Iebba","doi":"10.1016/bs.mcb.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>The microbial world is characterized by mechanisms of competition and predation, akin to the animal world. However, while predation's ecological role is well-established in animals, it's less understood in bacteria due to fewer known predators and unclear phylogenetic affiliations. Nevertheless, microorganisms can prey on bacterial cells, including Bacteriophages, Protists, and Predatory Prokaryotes. These predators inhabit various habitats and may play vital roles in bacterial ecology and ecosystem regulation. Predatory interactions between host and parasite are common in nature. Predatory bacteria, such as Bdellovibrio and like organisms (BALOs), employ various strategies, including epibiotic predation and direct invasion. BALOs, which thrive in the periplasmic space of Gram-negative bacterial cells, modulate bacterial populations and could serve as preventive or therapeutic agents against Gram-negative infections. While primarily active against extracellular prey, BALOs may also target mitochondria, which are crucial for cellular processes. The relationship between intracellular bacteria and host mitochondria, including morphology, function, and apoptosis, warrants further exploration. Protocols for growing, propagating, and detecting predatory activities of BALOs, particularly Bdellovibrio bacteriovorus, are provided to assess their presence and activities against potential prey.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"194 ","pages":"151-167"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial predators and BALOs: Growth protocol and relation with mitochondria.\",\"authors\":\"Valerio Iebba\",\"doi\":\"10.1016/bs.mcb.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microbial world is characterized by mechanisms of competition and predation, akin to the animal world. However, while predation's ecological role is well-established in animals, it's less understood in bacteria due to fewer known predators and unclear phylogenetic affiliations. Nevertheless, microorganisms can prey on bacterial cells, including Bacteriophages, Protists, and Predatory Prokaryotes. These predators inhabit various habitats and may play vital roles in bacterial ecology and ecosystem regulation. Predatory interactions between host and parasite are common in nature. Predatory bacteria, such as Bdellovibrio and like organisms (BALOs), employ various strategies, including epibiotic predation and direct invasion. BALOs, which thrive in the periplasmic space of Gram-negative bacterial cells, modulate bacterial populations and could serve as preventive or therapeutic agents against Gram-negative infections. While primarily active against extracellular prey, BALOs may also target mitochondria, which are crucial for cellular processes. The relationship between intracellular bacteria and host mitochondria, including morphology, function, and apoptosis, warrants further exploration. Protocols for growing, propagating, and detecting predatory activities of BALOs, particularly Bdellovibrio bacteriovorus, are provided to assess their presence and activities against potential prey.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":\"194 \",\"pages\":\"151-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2024.07.003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.07.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

微生物世界的特点是竞争和捕食机制,类似于动物世界。然而,虽然捕食者在动物中的生态作用已经确立,但由于已知的捕食者较少,并且系统发育关系不清楚,因此对细菌的了解较少。然而,微生物可以捕食细菌细胞,包括噬菌体、原生生物和掠食性原核生物。这些捕食者生活在不同的栖息地,可能在细菌生态和生态系统调节中发挥重要作用。宿主和寄生虫之间的掠食性相互作用在自然界中很常见。掠食性细菌,如蛭弧菌及其类似生物(BALOs),采用各种策略,包括表观捕食和直接入侵。BALOs生长在革兰氏阴性细菌细胞的质周间隙,可调节细菌种群,可作为预防或治疗革兰氏阴性感染的药物。虽然BALOs主要针对细胞外猎物,但它也可能针对线粒体,这对细胞过程至关重要。胞内细菌与宿主线粒体的关系,包括形态、功能和凋亡,值得进一步探讨。提供了balo的生长,繁殖和检测掠食活动的方案,特别是蛭状弧菌,以评估其存在和对潜在猎物的活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial predators and BALOs: Growth protocol and relation with mitochondria.

The microbial world is characterized by mechanisms of competition and predation, akin to the animal world. However, while predation's ecological role is well-established in animals, it's less understood in bacteria due to fewer known predators and unclear phylogenetic affiliations. Nevertheless, microorganisms can prey on bacterial cells, including Bacteriophages, Protists, and Predatory Prokaryotes. These predators inhabit various habitats and may play vital roles in bacterial ecology and ecosystem regulation. Predatory interactions between host and parasite are common in nature. Predatory bacteria, such as Bdellovibrio and like organisms (BALOs), employ various strategies, including epibiotic predation and direct invasion. BALOs, which thrive in the periplasmic space of Gram-negative bacterial cells, modulate bacterial populations and could serve as preventive or therapeutic agents against Gram-negative infections. While primarily active against extracellular prey, BALOs may also target mitochondria, which are crucial for cellular processes. The relationship between intracellular bacteria and host mitochondria, including morphology, function, and apoptosis, warrants further exploration. Protocols for growing, propagating, and detecting predatory activities of BALOs, particularly Bdellovibrio bacteriovorus, are provided to assess their presence and activities against potential prey.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信