海洋与陆地:环境与后生动物中Copia反转录转座子多样性之间的联系。

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY
Khouloud Klai, Sarah Farhat, Laure Lamothe, Dominique Higuet, Éric Bonnivard
{"title":"海洋与陆地:环境与后生动物中Copia反转录转座子多样性之间的联系。","authors":"Khouloud Klai, Sarah Farhat, Laure Lamothe, Dominique Higuet, Éric Bonnivard","doi":"10.1186/s13100-025-00346-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>LTR-retrotransposons are widely distributed among the eukaryote tree of life and have extensive impacts on genome evolution. Among the three canonical superfamilies, the Copia superfamily demonstrates the lowest abundances and repartitions among metazoans. To better understand their dynamics, we have conducted the first large-scale study of LTR-retrotransposon diversity in metazoans and we report on the diversity and distribution of the Copia elements.</p><p><strong>Results: </strong>We have identified over than 2,300 Copia elements from 263 metazoan genomes. The sequences were annotated at the clade level based on the classification of their RT/RNaseH domain. Our results confirmed that Copia are scarce in metazoans. However, we observed a great variation in Copia abundance between taxa. Surprisingly, some genomes, had a record number of copies, especially in Squamata. In contrast, terrestrial Deuterostomia display a clear loss of Copia diversity leading to their disappearance in some taxa. Additionally, we identified 18 new clades, tripling the number of previously defined clades. By studying more than 50 widespread taxa, we believe that most metazoan Copia clades have now been identified. The most striking result is that environment appears to be related to Copia distribution. We defined two sets of clades characterizing marine or terrestrial taxa. This two-sided pattern could be partially explained by horizontal transfers within both environments.</p><p><strong>Conclusions: </strong>This research enhances our understanding of transposable element evolution and emphasizes the influence of sharing the same ecological contexts on genomic diversity, and highlights the importance of annotating them at the clade level to characterize their evolutionary dynamics.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"16 1","pages":"9"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Marine vs. terrestrial: links between the environment and the diversity of Copia retrotransposon in metazoans.\",\"authors\":\"Khouloud Klai, Sarah Farhat, Laure Lamothe, Dominique Higuet, Éric Bonnivard\",\"doi\":\"10.1186/s13100-025-00346-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>LTR-retrotransposons are widely distributed among the eukaryote tree of life and have extensive impacts on genome evolution. Among the three canonical superfamilies, the Copia superfamily demonstrates the lowest abundances and repartitions among metazoans. To better understand their dynamics, we have conducted the first large-scale study of LTR-retrotransposon diversity in metazoans and we report on the diversity and distribution of the Copia elements.</p><p><strong>Results: </strong>We have identified over than 2,300 Copia elements from 263 metazoan genomes. The sequences were annotated at the clade level based on the classification of their RT/RNaseH domain. Our results confirmed that Copia are scarce in metazoans. However, we observed a great variation in Copia abundance between taxa. Surprisingly, some genomes, had a record number of copies, especially in Squamata. In contrast, terrestrial Deuterostomia display a clear loss of Copia diversity leading to their disappearance in some taxa. Additionally, we identified 18 new clades, tripling the number of previously defined clades. By studying more than 50 widespread taxa, we believe that most metazoan Copia clades have now been identified. The most striking result is that environment appears to be related to Copia distribution. We defined two sets of clades characterizing marine or terrestrial taxa. This two-sided pattern could be partially explained by horizontal transfers within both environments.</p><p><strong>Conclusions: </strong>This research enhances our understanding of transposable element evolution and emphasizes the influence of sharing the same ecological contexts on genomic diversity, and highlights the importance of annotating them at the clade level to characterize their evolutionary dynamics.</p>\",\"PeriodicalId\":18854,\"journal\":{\"name\":\"Mobile DNA\",\"volume\":\"16 1\",\"pages\":\"9\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile DNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13100-025-00346-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-025-00346-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:ltr -反转录转座子广泛分布于真核生物生命树中,对基因组进化有着广泛的影响。在三个典型的超家族中,Copia超家族在后生动物中表现出最低的丰度和重划分。为了更好地了解它们的动态,我们进行了后生动物中ltr -反转录转座子多样性的首次大规模研究,并报道了Copia元件的多样性和分布。结果:我们从263个后生动物基因组中鉴定出2300多个Copia元件。根据其RT/RNaseH结构域的分类,在进化水平上对这些序列进行注释。我们的结果证实,Copia在后生动物中是稀缺的。但不同分类群间Copia丰度差异较大。令人惊讶的是,一些基因组具有创纪录的拷贝数,尤其是在Squamata中。相比之下,陆生后口动物的Copia多样性明显丧失,导致其在某些分类群中消失。此外,我们确定了18个新的分支,是以前定义的分支数量的三倍。通过对50多个分布广泛的分类群的研究,我们认为大多数后生的Copia分支现在已经被确定。最引人注目的结果是环境似乎与Copia分布有关。我们定义了两组演化枝来表征海洋或陆地分类群。这种双面模式可以用两种环境中的水平转移来部分解释。结论:本研究提高了我们对转座因子进化的认识,强调了共享相同生态环境对基因组多样性的影响,并强调了在支系水平上对其进行注释以表征其进化动态的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marine vs. terrestrial: links between the environment and the diversity of Copia retrotransposon in metazoans.

Background: LTR-retrotransposons are widely distributed among the eukaryote tree of life and have extensive impacts on genome evolution. Among the three canonical superfamilies, the Copia superfamily demonstrates the lowest abundances and repartitions among metazoans. To better understand their dynamics, we have conducted the first large-scale study of LTR-retrotransposon diversity in metazoans and we report on the diversity and distribution of the Copia elements.

Results: We have identified over than 2,300 Copia elements from 263 metazoan genomes. The sequences were annotated at the clade level based on the classification of their RT/RNaseH domain. Our results confirmed that Copia are scarce in metazoans. However, we observed a great variation in Copia abundance between taxa. Surprisingly, some genomes, had a record number of copies, especially in Squamata. In contrast, terrestrial Deuterostomia display a clear loss of Copia diversity leading to their disappearance in some taxa. Additionally, we identified 18 new clades, tripling the number of previously defined clades. By studying more than 50 widespread taxa, we believe that most metazoan Copia clades have now been identified. The most striking result is that environment appears to be related to Copia distribution. We defined two sets of clades characterizing marine or terrestrial taxa. This two-sided pattern could be partially explained by horizontal transfers within both environments.

Conclusions: This research enhances our understanding of transposable element evolution and emphasizes the influence of sharing the same ecological contexts on genomic diversity, and highlights the importance of annotating them at the clade level to characterize their evolutionary dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信