{"title":"基于边缘增强低秩张量分解的三维磁共振图像去噪。","authors":"Li Wang , Chong Zeng , Xingtuo Zhang , Liang Zhao","doi":"10.1016/j.mri.2025.110365","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic Resonance images (MRI) denoising is to obtain high quality image from infectant version. Recently, low-rank tensor (LRT) methods have been developed and attained resounding success in MRI denoising. However, these pure LRT models are incapable of utilizing the comprehensive inherent information of clean MRI. To overcome these drawbacks, we design a novel edge-enhanced low-rank tensor approximation (EELRTA) framework for Rician noise removal. The tensor gradient L0 norm regularization with describing the local structure information is incorporated into the weighted core tensor rank model for improving texture edge preservation. The application of weights can further preserve the potentially useful information distributed on the different core tensor coefficients with different physical meanings. What's more, non-local self-similarity tactic is employed for low-rank sparsity-encourage and enhancing anti-noise capability of EELRTA model. The proposed EELRTA method is tackled by an efficient alternating direction method of multipliers (ADMM). The Experiment results on simulation and multiple sclerosis lesion (MSL) data illustrate that the proposed method can effectively remove noise while reasonably retaining pathological structure information.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"119 ","pages":"Article 110365"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising of 3D magnetic resonance images via edge-enhanced low-rank tensor decomposition\",\"authors\":\"Li Wang , Chong Zeng , Xingtuo Zhang , Liang Zhao\",\"doi\":\"10.1016/j.mri.2025.110365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic Resonance images (MRI) denoising is to obtain high quality image from infectant version. Recently, low-rank tensor (LRT) methods have been developed and attained resounding success in MRI denoising. However, these pure LRT models are incapable of utilizing the comprehensive inherent information of clean MRI. To overcome these drawbacks, we design a novel edge-enhanced low-rank tensor approximation (EELRTA) framework for Rician noise removal. The tensor gradient L0 norm regularization with describing the local structure information is incorporated into the weighted core tensor rank model for improving texture edge preservation. The application of weights can further preserve the potentially useful information distributed on the different core tensor coefficients with different physical meanings. What's more, non-local self-similarity tactic is employed for low-rank sparsity-encourage and enhancing anti-noise capability of EELRTA model. The proposed EELRTA method is tackled by an efficient alternating direction method of multipliers (ADMM). The Experiment results on simulation and multiple sclerosis lesion (MSL) data illustrate that the proposed method can effectively remove noise while reasonably retaining pathological structure information.</div></div>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\"119 \",\"pages\":\"Article 110365\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0730725X25000499\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X25000499","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Denoising of 3D magnetic resonance images via edge-enhanced low-rank tensor decomposition
Magnetic Resonance images (MRI) denoising is to obtain high quality image from infectant version. Recently, low-rank tensor (LRT) methods have been developed and attained resounding success in MRI denoising. However, these pure LRT models are incapable of utilizing the comprehensive inherent information of clean MRI. To overcome these drawbacks, we design a novel edge-enhanced low-rank tensor approximation (EELRTA) framework for Rician noise removal. The tensor gradient L0 norm regularization with describing the local structure information is incorporated into the weighted core tensor rank model for improving texture edge preservation. The application of weights can further preserve the potentially useful information distributed on the different core tensor coefficients with different physical meanings. What's more, non-local self-similarity tactic is employed for low-rank sparsity-encourage and enhancing anti-noise capability of EELRTA model. The proposed EELRTA method is tackled by an efficient alternating direction method of multipliers (ADMM). The Experiment results on simulation and multiple sclerosis lesion (MSL) data illustrate that the proposed method can effectively remove noise while reasonably retaining pathological structure information.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.