Matthew A Luetzen, Richik Chakraborty, Oscar Andrés Moreno-Ramos, Olga Yaneth Echeverri-Peña, Yoko Satta, Adriana M Montaño
{"title":"溶酶体酶芳基硫酸酯酶A和-半乳糖脑苷酶的纯化选择及其对髓磷脂完整性的进化影响。","authors":"Matthew A Luetzen, Richik Chakraborty, Oscar Andrés Moreno-Ramos, Olga Yaneth Echeverri-Peña, Yoko Satta, Adriana M Montaño","doi":"10.1016/j.jlr.2025.100769","DOIUrl":null,"url":null,"abstract":"<p><p>The myelin is responsible for providing stability to the axons of the nerve cells, but above all, to improve transmission speed of the nerve impulse in vertebrates. Over 70% of the myelin sheath is composed of lipids and the remaining portion by approximately 2,000 proteins. The myelin sheath has been constantly evolving, and it is known that unusually high concentrations of galactosylceramide (GalCer) and its sulfated form play a major role in the biophysical properties of the myelin. To gain insights of the evolutionary role of GalCer, we have studied two lysosomal enzymes involved in GalCer degradation, arylsulfatase A (ARSA) and galactocerebrosidase (GALC). Deficiency of ARSA or GALC causes demyelinating disorders. We conducted phylogenetic analyses of 105 ARSA and 110 GALC orthologs representing more than 600 million years ago of evolution. We examined i) low values of the ratio of nonsynonymous to synonymous nucleotide-substitution rates (dN/dS) indicating purifying selection and ii) negative selection of amino acids located in the active site preventing pathogenic mutations. Gene structure analyses showed evidence of rearrangement with gain and loss of exons while there were conserved regions mainly located around the active site. We also found a limited number of sites under positive selection pressure that do not cause alterations to the overall protein structure. Our results indicate that ARSA and GALC have been highly conserved during the evolutionary process to maintain the metabolism of GalCer, which is essential for the integrity of the white matter in vertebrate species.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100769"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008523/pdf/","citationCount":"0","resultStr":"{\"title\":\"Purifying selection of the lysosomal enzymes arylsulfatase A and beta-galactocerebrosidase and their evolutionary impact on myelin integrity.\",\"authors\":\"Matthew A Luetzen, Richik Chakraborty, Oscar Andrés Moreno-Ramos, Olga Yaneth Echeverri-Peña, Yoko Satta, Adriana M Montaño\",\"doi\":\"10.1016/j.jlr.2025.100769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The myelin is responsible for providing stability to the axons of the nerve cells, but above all, to improve transmission speed of the nerve impulse in vertebrates. Over 70% of the myelin sheath is composed of lipids and the remaining portion by approximately 2,000 proteins. The myelin sheath has been constantly evolving, and it is known that unusually high concentrations of galactosylceramide (GalCer) and its sulfated form play a major role in the biophysical properties of the myelin. To gain insights of the evolutionary role of GalCer, we have studied two lysosomal enzymes involved in GalCer degradation, arylsulfatase A (ARSA) and galactocerebrosidase (GALC). Deficiency of ARSA or GALC causes demyelinating disorders. We conducted phylogenetic analyses of 105 ARSA and 110 GALC orthologs representing more than 600 million years ago of evolution. We examined i) low values of the ratio of nonsynonymous to synonymous nucleotide-substitution rates (dN/dS) indicating purifying selection and ii) negative selection of amino acids located in the active site preventing pathogenic mutations. Gene structure analyses showed evidence of rearrangement with gain and loss of exons while there were conserved regions mainly located around the active site. We also found a limited number of sites under positive selection pressure that do not cause alterations to the overall protein structure. Our results indicate that ARSA and GALC have been highly conserved during the evolutionary process to maintain the metabolism of GalCer, which is essential for the integrity of the white matter in vertebrate species.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100769\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008523/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100769\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100769","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Purifying selection of the lysosomal enzymes arylsulfatase A and beta-galactocerebrosidase and their evolutionary impact on myelin integrity.
The myelin is responsible for providing stability to the axons of the nerve cells, but above all, to improve transmission speed of the nerve impulse in vertebrates. Over 70% of the myelin sheath is composed of lipids and the remaining portion by approximately 2,000 proteins. The myelin sheath has been constantly evolving, and it is known that unusually high concentrations of galactosylceramide (GalCer) and its sulfated form play a major role in the biophysical properties of the myelin. To gain insights of the evolutionary role of GalCer, we have studied two lysosomal enzymes involved in GalCer degradation, arylsulfatase A (ARSA) and galactocerebrosidase (GALC). Deficiency of ARSA or GALC causes demyelinating disorders. We conducted phylogenetic analyses of 105 ARSA and 110 GALC orthologs representing more than 600 million years ago of evolution. We examined i) low values of the ratio of nonsynonymous to synonymous nucleotide-substitution rates (dN/dS) indicating purifying selection and ii) negative selection of amino acids located in the active site preventing pathogenic mutations. Gene structure analyses showed evidence of rearrangement with gain and loss of exons while there were conserved regions mainly located around the active site. We also found a limited number of sites under positive selection pressure that do not cause alterations to the overall protein structure. Our results indicate that ARSA and GALC have been highly conserved during the evolutionary process to maintain the metabolism of GalCer, which is essential for the integrity of the white matter in vertebrate species.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.