关于机器学习预测器可信度评估的共识声明。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Alessandra Aldieri, Thiranja Prasad Babarenda Gamage, Antonino Amedeo La Mattina, Axel Loewe, Francesco Pappalardo, Marco Viceconti
{"title":"关于机器学习预测器可信度评估的共识声明。","authors":"Alessandra Aldieri, Thiranja Prasad Babarenda Gamage, Antonino Amedeo La Mattina, Axel Loewe, Francesco Pappalardo, Marco Viceconti","doi":"10.1093/bib/bbaf100","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid integration of machine learning (ML) predictors into in silico medicine has revolutionized the estimation of quantities of interest that are otherwise challenging to measure directly. However, the credibility of these predictors is critical, especially when they inform high-stakes healthcare decisions. This position paper presents a consensus statement developed by experts within the In Silico World Community of Practice. We outline 12 key statements forming the theoretical foundation for evaluating the credibility of ML predictors, emphasizing the necessity of causal knowledge, rigorous error quantification, and robustness to biases. By comparing ML predictors with biophysical models, we highlight unique challenges associated with implicit causal knowledge and propose strategies to ensure reliability and applicability. Our recommendations aim to guide researchers, developers, and regulators in the rigorous assessment and deployment of ML predictors in clinical and biomedical contexts.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891646/pdf/","citationCount":"0","resultStr":"{\"title\":\"Consensus statement on the credibility assessment of machine learning predictors.\",\"authors\":\"Alessandra Aldieri, Thiranja Prasad Babarenda Gamage, Antonino Amedeo La Mattina, Axel Loewe, Francesco Pappalardo, Marco Viceconti\",\"doi\":\"10.1093/bib/bbaf100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid integration of machine learning (ML) predictors into in silico medicine has revolutionized the estimation of quantities of interest that are otherwise challenging to measure directly. However, the credibility of these predictors is critical, especially when they inform high-stakes healthcare decisions. This position paper presents a consensus statement developed by experts within the In Silico World Community of Practice. We outline 12 key statements forming the theoretical foundation for evaluating the credibility of ML predictors, emphasizing the necessity of causal knowledge, rigorous error quantification, and robustness to biases. By comparing ML predictors with biophysical models, we highlight unique challenges associated with implicit causal knowledge and propose strategies to ensure reliability and applicability. Our recommendations aim to guide researchers, developers, and regulators in the rigorous assessment and deployment of ML predictors in clinical and biomedical contexts.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891646/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf100\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf100","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)预测器与计算机医学的快速集成已经彻底改变了对感兴趣的数量的估计,否则很难直接测量。然而,这些预测的可信度是至关重要的,特别是当他们告知高风险的医疗保健决策。这份立场文件提出了一份共识声明,由硅谷世界实践社区的专家们共同制定。我们概述了12个关键陈述,这些陈述构成了评估机器学习预测器可信度的理论基础,强调了因果知识、严格的误差量化和对偏差的稳健性的必要性。通过比较ML预测器与生物物理模型,我们强调了与隐性因果知识相关的独特挑战,并提出了确保可靠性和适用性的策略。我们的建议旨在指导研究人员、开发人员和监管机构在临床和生物医学背景下严格评估和部署ML预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus statement on the credibility assessment of machine learning predictors.

The rapid integration of machine learning (ML) predictors into in silico medicine has revolutionized the estimation of quantities of interest that are otherwise challenging to measure directly. However, the credibility of these predictors is critical, especially when they inform high-stakes healthcare decisions. This position paper presents a consensus statement developed by experts within the In Silico World Community of Practice. We outline 12 key statements forming the theoretical foundation for evaluating the credibility of ML predictors, emphasizing the necessity of causal knowledge, rigorous error quantification, and robustness to biases. By comparing ML predictors with biophysical models, we highlight unique challenges associated with implicit causal knowledge and propose strategies to ensure reliability and applicability. Our recommendations aim to guide researchers, developers, and regulators in the rigorous assessment and deployment of ML predictors in clinical and biomedical contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信