乳腺癌ctDNA检测预测模型(cirr - predict)的建立。

IF 3 3区 医学 Q2 ONCOLOGY
Breast Cancer Research and Treatment Pub Date : 2025-06-01 Epub Date: 2025-03-07 DOI:10.1007/s10549-025-07647-0
Chiaki Nakauchi, Nanae Masunaga, Naofumi Kagara, Chiya Oshiro, Masafumi Shimoda, Kenzo Shimazu
{"title":"乳腺癌ctDNA检测预测模型(cirr - predict)的建立。","authors":"Chiaki Nakauchi, Nanae Masunaga, Naofumi Kagara, Chiya Oshiro, Masafumi Shimoda, Kenzo Shimazu","doi":"10.1007/s10549-025-07647-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The detection of circulating tumor DNA (ctDNA) is a valuable method to predict the risk of recurrence and to detect real-time gene changes. The amount of ctDNA is affected by many factors. Moreover, the detection rate of ctDNA varies from report to report.</p><p><strong>Methods: </strong>The present study evaluated differentially expressed genes using a DNA microarray assay for gene expression in tumors with and without detected ctDNA and constructed a prediction model for the detectability of ctDNA in breast tumor tissues. The model, named Cir-Predict, consisted of 126 probe sets (111 genes) and was constructed in a training set of breast cancer patients (n = 35) and validated in a validation set (n = 13).</p><p><strong>Results: </strong>The accuracy, sensitivity, and specificity in training and validation sets were over 90%, and Cir-Predict was significantly associated with ctDNA detection independently of the other conventional clinicopathological parameters in training and validation sets (P < 0.001, P = 0.014, respectively). Cir-Predict (+) was significantly associated with worse recurrence-free survival (P = 0.006). Pathway analysis revealed that nine pathways including tight junction and cell cycle tended to be related to ctDNA detectability.</p><p><strong>Conclusion: </strong>Cir-Predict not only provides information useful for breast cancer treatment, but also helps the understanding of the mechanism by which ctDNA is detected.</p>","PeriodicalId":9133,"journal":{"name":"Breast Cancer Research and Treatment","volume":" ","pages":"331-339"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a prediction model for ctDNA detection (Cir-Predict) in breast cancer.\",\"authors\":\"Chiaki Nakauchi, Nanae Masunaga, Naofumi Kagara, Chiya Oshiro, Masafumi Shimoda, Kenzo Shimazu\",\"doi\":\"10.1007/s10549-025-07647-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The detection of circulating tumor DNA (ctDNA) is a valuable method to predict the risk of recurrence and to detect real-time gene changes. The amount of ctDNA is affected by many factors. Moreover, the detection rate of ctDNA varies from report to report.</p><p><strong>Methods: </strong>The present study evaluated differentially expressed genes using a DNA microarray assay for gene expression in tumors with and without detected ctDNA and constructed a prediction model for the detectability of ctDNA in breast tumor tissues. The model, named Cir-Predict, consisted of 126 probe sets (111 genes) and was constructed in a training set of breast cancer patients (n = 35) and validated in a validation set (n = 13).</p><p><strong>Results: </strong>The accuracy, sensitivity, and specificity in training and validation sets were over 90%, and Cir-Predict was significantly associated with ctDNA detection independently of the other conventional clinicopathological parameters in training and validation sets (P < 0.001, P = 0.014, respectively). Cir-Predict (+) was significantly associated with worse recurrence-free survival (P = 0.006). Pathway analysis revealed that nine pathways including tight junction and cell cycle tended to be related to ctDNA detectability.</p><p><strong>Conclusion: </strong>Cir-Predict not only provides information useful for breast cancer treatment, but also helps the understanding of the mechanism by which ctDNA is detected.</p>\",\"PeriodicalId\":9133,\"journal\":{\"name\":\"Breast Cancer Research and Treatment\",\"volume\":\" \",\"pages\":\"331-339\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research and Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10549-025-07647-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research and Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10549-025-07647-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:循环肿瘤DNA (ctDNA)检测是预测肿瘤复发风险和实时检测肿瘤基因变化的重要手段。ctDNA的数量受许多因素的影响。此外,ctDNA的检出率因报告而异。方法:本研究采用DNA微阵列法评估ctDNA在乳腺肿瘤组织中表达差异基因,并构建ctDNA在乳腺肿瘤组织中可检测性的预测模型。该模型名为cirr - predict,由126个探针集(111个基因)组成,在乳腺癌患者的训练集(n = 35)中构建,并在验证集(n = 13)中进行验证。结果:训练集和验证集的准确性、敏感性和特异性均在90%以上,且cirr - predict与ctDNA检测的相关性显著,独立于训练集和验证集的其他常规临床病理参数(P)。结论:cirr - predict不仅为乳腺癌治疗提供了有用的信息,而且有助于了解ctDNA的检测机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a prediction model for ctDNA detection (Cir-Predict) in breast cancer.

Purpose: The detection of circulating tumor DNA (ctDNA) is a valuable method to predict the risk of recurrence and to detect real-time gene changes. The amount of ctDNA is affected by many factors. Moreover, the detection rate of ctDNA varies from report to report.

Methods: The present study evaluated differentially expressed genes using a DNA microarray assay for gene expression in tumors with and without detected ctDNA and constructed a prediction model for the detectability of ctDNA in breast tumor tissues. The model, named Cir-Predict, consisted of 126 probe sets (111 genes) and was constructed in a training set of breast cancer patients (n = 35) and validated in a validation set (n = 13).

Results: The accuracy, sensitivity, and specificity in training and validation sets were over 90%, and Cir-Predict was significantly associated with ctDNA detection independently of the other conventional clinicopathological parameters in training and validation sets (P < 0.001, P = 0.014, respectively). Cir-Predict (+) was significantly associated with worse recurrence-free survival (P = 0.006). Pathway analysis revealed that nine pathways including tight junction and cell cycle tended to be related to ctDNA detectability.

Conclusion: Cir-Predict not only provides information useful for breast cancer treatment, but also helps the understanding of the mechanism by which ctDNA is detected.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
342
审稿时长
1 months
期刊介绍: Breast Cancer Research and Treatment provides the surgeon, radiotherapist, medical oncologist, endocrinologist, epidemiologist, immunologist or cell biologist investigating problems in breast cancer a single forum for communication. The journal creates a "market place" for breast cancer topics which cuts across all the usual lines of disciplines, providing a site for presenting pertinent investigations, and for discussing critical questions relevant to the entire field. It seeks to develop a new focus and new perspectives for all those concerned with breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信