测试和克服模块化响应分析的局限性。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jean-Pierre Borg, Jacques Colinge, Patrice Ravel
{"title":"测试和克服模块化响应分析的局限性。","authors":"Jean-Pierre Borg, Jacques Colinge, Patrice Ravel","doi":"10.1093/bib/bbaf098","DOIUrl":null,"url":null,"abstract":"<p><p>Modular response analysis (MRA) is an effective method to infer biological networks from perturbation data. However, it has several limitations such as strong sensitivity to noise, need of performing independent perturbations that hit a single node at a time, and linear approximation of dependencies within the network. Previously, we addressed the sensitivity of MRA to noise by reinterpreting MRA as a multilinear regression problem. We demonstrated the advantages of this approach over the conventional MRA and other known inference methods, particularly in handling noise measurements and nonlinear networks. Here, we provide new contributions to complement this theory. First, we overcome the need of perturbations to be independent, thereby augmenting MRA applicability. Second, using analysis of variance and lack-of-fit tests, we can now assess MRA compatibility with the data and identify the primary source of errors. In cases where nonlinearity prevails, we propose extending the model to a second-order polynomial. Third, we demonstrate how to effectively use prior knowledge about a network. We validated these results using 4 networks with known dynamics (3, 4, and 6 nodes) and 40 simulated networks, ranging from 10 to 200 nodes. Finally, we incorporated these innovations into our R software package MRARegress to offer a comprehensive, extended theory for MRA and to facilitate its use by the community. Mathematical aspects, tests details, and scripts are provided as Supplementary Information (see 'Data Availability Statement').</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891662/pdf/","citationCount":"0","resultStr":"{\"title\":\"Testing and overcoming the limitations of modular response analysis.\",\"authors\":\"Jean-Pierre Borg, Jacques Colinge, Patrice Ravel\",\"doi\":\"10.1093/bib/bbaf098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modular response analysis (MRA) is an effective method to infer biological networks from perturbation data. However, it has several limitations such as strong sensitivity to noise, need of performing independent perturbations that hit a single node at a time, and linear approximation of dependencies within the network. Previously, we addressed the sensitivity of MRA to noise by reinterpreting MRA as a multilinear regression problem. We demonstrated the advantages of this approach over the conventional MRA and other known inference methods, particularly in handling noise measurements and nonlinear networks. Here, we provide new contributions to complement this theory. First, we overcome the need of perturbations to be independent, thereby augmenting MRA applicability. Second, using analysis of variance and lack-of-fit tests, we can now assess MRA compatibility with the data and identify the primary source of errors. In cases where nonlinearity prevails, we propose extending the model to a second-order polynomial. Third, we demonstrate how to effectively use prior knowledge about a network. We validated these results using 4 networks with known dynamics (3, 4, and 6 nodes) and 40 simulated networks, ranging from 10 to 200 nodes. Finally, we incorporated these innovations into our R software package MRARegress to offer a comprehensive, extended theory for MRA and to facilitate its use by the community. Mathematical aspects, tests details, and scripts are provided as Supplementary Information (see 'Data Availability Statement').</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891662/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf098\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf098","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

模响应分析(MRA)是从扰动数据中推断生物网络的有效方法。然而,它有一些局限性,如对噪声的强敏感性,需要执行一次击中单个节点的独立扰动,以及网络内依赖关系的线性逼近。以前,我们通过将MRA重新解释为多线性回归问题来解决MRA对噪声的敏感性。我们证明了这种方法优于传统的MRA和其他已知的推理方法,特别是在处理噪声测量和非线性网络方面。在这里,我们提供了新的贡献来补充这一理论。首先,我们克服了扰动独立的需要,从而增强了MRA的适用性。其次,使用方差分析和缺乏拟合检验,我们现在可以评估MRA与数据的兼容性,并确定错误的主要来源。在非线性普遍存在的情况下,我们建议将模型扩展到二阶多项式。第三,我们演示了如何有效地使用关于网络的先验知识。我们使用4个已知动态网络(3、4和6个节点)和40个模拟网络(10到200个节点)验证了这些结果。最后,我们将这些创新整合到我们的R软件包MRARegress中,为MRA提供了一个全面的、扩展的理论,并促进了社区对其的使用。数学方面、测试细节和脚本作为补充信息提供(参见“数据可用性声明”)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing and overcoming the limitations of modular response analysis.

Modular response analysis (MRA) is an effective method to infer biological networks from perturbation data. However, it has several limitations such as strong sensitivity to noise, need of performing independent perturbations that hit a single node at a time, and linear approximation of dependencies within the network. Previously, we addressed the sensitivity of MRA to noise by reinterpreting MRA as a multilinear regression problem. We demonstrated the advantages of this approach over the conventional MRA and other known inference methods, particularly in handling noise measurements and nonlinear networks. Here, we provide new contributions to complement this theory. First, we overcome the need of perturbations to be independent, thereby augmenting MRA applicability. Second, using analysis of variance and lack-of-fit tests, we can now assess MRA compatibility with the data and identify the primary source of errors. In cases where nonlinearity prevails, we propose extending the model to a second-order polynomial. Third, we demonstrate how to effectively use prior knowledge about a network. We validated these results using 4 networks with known dynamics (3, 4, and 6 nodes) and 40 simulated networks, ranging from 10 to 200 nodes. Finally, we incorporated these innovations into our R software package MRARegress to offer a comprehensive, extended theory for MRA and to facilitate its use by the community. Mathematical aspects, tests details, and scripts are provided as Supplementary Information (see 'Data Availability Statement').

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信