酵母知识图谱数据库用于探索酿酒酵母和裂糖酵母。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mani R. Kumar , Karthick Raja Arulprakasam , An-Nikol Kutevska , Marek Mutwil , Guillaume Thibault
{"title":"酵母知识图谱数据库用于探索酿酒酵母和裂糖酵母。","authors":"Mani R. Kumar ,&nbsp;Karthick Raja Arulprakasam ,&nbsp;An-Nikol Kutevska ,&nbsp;Marek Mutwil ,&nbsp;Guillaume Thibault","doi":"10.1016/j.jmb.2025.169072","DOIUrl":null,"url":null,"abstract":"<div><div>Biomedical literature contains an extensive wealth of information on gene and protein function across various biological processes and diseases. However, navigating this vast and often restricted-access data can be challenging, making it difficult to extract specific insights efficiently. In this study, we introduce a high-throughput pipeline that leverages OpenAI’s Generative Pre-Trained Transformer Model (GPT) to automate the extraction and analysis of gene function information. We applied this approach to 84,427 publications on <em>Saccharomyces cerevisiae</em> and 6,452 publications on <em>Schizosaccharomyces pombe</em>, identifying 3,432,749 relationships for budding yeast and 421,198 relationships for <em>S. pombe</em>. This resulted in a comprehensive, searchable online Knowledge Graph database, available at <u>yeast.connectome.tools</u> and <u>spombe.connectome.tools</u>, which offers users extensive access to various interactions and pathways. Our analysis underscores the power of integrating artificial intelligence with bioinformatics, as demonstrated through key insights into important nodes like Hsp104 and Atg8 proteins. This work not only facilitates efficient data extraction in yeast research but also presents a scalable model for similar studies in other biological systems.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 10","pages":"Article 169072"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yeast Knowledge Graphs Database for Exploring Saccharomyces Cerevisiae and Schizosaccharomyces Pombe\",\"authors\":\"Mani R. Kumar ,&nbsp;Karthick Raja Arulprakasam ,&nbsp;An-Nikol Kutevska ,&nbsp;Marek Mutwil ,&nbsp;Guillaume Thibault\",\"doi\":\"10.1016/j.jmb.2025.169072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomedical literature contains an extensive wealth of information on gene and protein function across various biological processes and diseases. However, navigating this vast and often restricted-access data can be challenging, making it difficult to extract specific insights efficiently. In this study, we introduce a high-throughput pipeline that leverages OpenAI’s Generative Pre-Trained Transformer Model (GPT) to automate the extraction and analysis of gene function information. We applied this approach to 84,427 publications on <em>Saccharomyces cerevisiae</em> and 6,452 publications on <em>Schizosaccharomyces pombe</em>, identifying 3,432,749 relationships for budding yeast and 421,198 relationships for <em>S. pombe</em>. This resulted in a comprehensive, searchable online Knowledge Graph database, available at <u>yeast.connectome.tools</u> and <u>spombe.connectome.tools</u>, which offers users extensive access to various interactions and pathways. Our analysis underscores the power of integrating artificial intelligence with bioinformatics, as demonstrated through key insights into important nodes like Hsp104 and Atg8 proteins. This work not only facilitates efficient data extraction in yeast research but also presents a scalable model for similar studies in other biological systems.</div></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"437 10\",\"pages\":\"Article 169072\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228362500138X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228362500138X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物医学文献包含了大量关于基因和蛋白质在各种生物过程和疾病中的功能的信息。然而,导航这些庞大且通常限制访问的数据可能具有挑战性,使得难以有效地提取特定的见解。在这项研究中,我们引入了一个高通量管道,利用OpenAI的生成预训练变压器模型(GPT)来自动提取和分析基因功能信息。我们将该方法应用于84,427篇关于酿酒酵母的出版物和6,452篇关于pombe Schizosaccharomyces的出版物,确定了3,432,749种出芽酵母和421,198种S. pombe的关系。这导致了一个全面的,可搜索的在线知识图谱数据库,可在酵母。连接组。工具和海绵。连接组。工具,它为用户提供了广泛的访问各种交互和途径。我们的分析强调了将人工智能与生物信息学相结合的力量,正如对Hsp104和at8蛋白等重要节点的关键见解所证明的那样。这项工作不仅促进了酵母研究中有效的数据提取,而且为其他生物系统的类似研究提供了可扩展的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Yeast Knowledge Graphs Database for Exploring Saccharomyces Cerevisiae and Schizosaccharomyces Pombe

Yeast Knowledge Graphs Database for Exploring Saccharomyces Cerevisiae and Schizosaccharomyces Pombe
Biomedical literature contains an extensive wealth of information on gene and protein function across various biological processes and diseases. However, navigating this vast and often restricted-access data can be challenging, making it difficult to extract specific insights efficiently. In this study, we introduce a high-throughput pipeline that leverages OpenAI’s Generative Pre-Trained Transformer Model (GPT) to automate the extraction and analysis of gene function information. We applied this approach to 84,427 publications on Saccharomyces cerevisiae and 6,452 publications on Schizosaccharomyces pombe, identifying 3,432,749 relationships for budding yeast and 421,198 relationships for S. pombe. This resulted in a comprehensive, searchable online Knowledge Graph database, available at yeast.connectome.tools and spombe.connectome.tools, which offers users extensive access to various interactions and pathways. Our analysis underscores the power of integrating artificial intelligence with bioinformatics, as demonstrated through key insights into important nodes like Hsp104 and Atg8 proteins. This work not only facilitates efficient data extraction in yeast research but also presents a scalable model for similar studies in other biological systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信