siRNA-AGO2复合物抑制细菌基因翻译:一种有前途的超级细菌感染治疗策略。

IF 10.6 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2025-03-18 Epub Date: 2025-03-06 DOI:10.1016/j.xcrm.2025.101997
Chen Wang, Wangjian Sheng, Yu Zhou, Xudong Hang, Jiayi Zhao, Yuanyuan Gu, Xiangfeng Meng, Yuefan Bai, Weili Li, Yujing Zhang, Linlin Zhang, Jing Yu, Zhen Zhou, Xiaona Li, Haorui Sun, Yanhong Xue, Tao Xu, Ke Zen, Hong Ling, Chen-Yu Zhang, Hongkai Bi, Huan Wang
{"title":"siRNA-AGO2复合物抑制细菌基因翻译:一种有前途的超级细菌感染治疗策略。","authors":"Chen Wang, Wangjian Sheng, Yu Zhou, Xudong Hang, Jiayi Zhao, Yuanyuan Gu, Xiangfeng Meng, Yuefan Bai, Weili Li, Yujing Zhang, Linlin Zhang, Jing Yu, Zhen Zhou, Xiaona Li, Haorui Sun, Yanhong Xue, Tao Xu, Ke Zen, Hong Ling, Chen-Yu Zhang, Hongkai Bi, Huan Wang","doi":"10.1016/j.xcrm.2025.101997","DOIUrl":null,"url":null,"abstract":"<p><p>Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101997"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970400/pdf/","citationCount":"0","resultStr":"{\"title\":\"siRNA-AGO2 complex inhibits bacterial gene translation: A promising therapeutic strategy for superbug infection.\",\"authors\":\"Chen Wang, Wangjian Sheng, Yu Zhou, Xudong Hang, Jiayi Zhao, Yuanyuan Gu, Xiangfeng Meng, Yuefan Bai, Weili Li, Yujing Zhang, Linlin Zhang, Jing Yu, Zhen Zhou, Xiaona Li, Haorui Sun, Yanhong Xue, Tao Xu, Ke Zen, Hong Ling, Chen-Yu Zhang, Hongkai Bi, Huan Wang\",\"doi\":\"10.1016/j.xcrm.2025.101997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"101997\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970400/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.101997\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.101997","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用RNA干扰(RNAi)沉默病原菌的耐药基因是对抗耐药细菌感染的一种潜在策略。目前,由于缺乏RNA诱导的沉默复杂机制和小干扰RNA (siRNA)递送的困难,RNAi无法在细菌中实现。在这里,我们发现外泌体sirna可以有效地递送到细菌细胞中,并且主要通过翻译抑制来沉默靶基因,而不会降解mRNA。外泌体Argonaute 2 (AGO2)蛋白与sirna形成复合物,这对细菌基因沉默至关重要。体外和体内生成的外泌体包装sirna通过沉默mecA基因使耐甲氧西林金黄色葡萄球菌(MRSA)对甲氧西林治疗重新敏感,mecA基因是MRSA的主要β -内酰胺耐药决定因素。该方法显著提高了MRSA感染小鼠模型的治疗效果。总之,我们的研究提供了一种siRNA递送到细菌的方法,可能有助于治疗耐药细菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
siRNA-AGO2 complex inhibits bacterial gene translation: A promising therapeutic strategy for superbug infection.

Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信