{"title":"星系团中的非微观耦合暗物质:全面综合分析","authors":"Saboura Zamani, Vincenzo Salzano, Dario Bettoni","doi":"10.1140/epjc/s10052-025-13956-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we explore how a non-minimal coupling between dark matter and gravity can affect the behavior of dark matter in galaxy clusters. We have considered the case of a disformal coupling, which leads to a modification of the Poisson equation. Building on an earlier work, we expand the analysis considering all possible disformal coupling scenarios and employing various dark matter density profiles. In doing so, we aim to constrain the key parameter in our model, the characteristic coupling length. To achieve this, we analyze data from a combination of strong and weak lensing using three statistical approaches: a single cluster fitting procedure, a joint analysis, and one with stacked profiles. Our findings show that the coupling length is typically very small, thus being fully consistent with general relativity, although with an upper limit at <span>\\(1\\sigma \\)</span> which is of the order of 100 kpc.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13956-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonminimally coupled dark matter in clusters of galaxies: a fully comprehensive analysis\",\"authors\":\"Saboura Zamani, Vincenzo Salzano, Dario Bettoni\",\"doi\":\"10.1140/epjc/s10052-025-13956-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we explore how a non-minimal coupling between dark matter and gravity can affect the behavior of dark matter in galaxy clusters. We have considered the case of a disformal coupling, which leads to a modification of the Poisson equation. Building on an earlier work, we expand the analysis considering all possible disformal coupling scenarios and employing various dark matter density profiles. In doing so, we aim to constrain the key parameter in our model, the characteristic coupling length. To achieve this, we analyze data from a combination of strong and weak lensing using three statistical approaches: a single cluster fitting procedure, a joint analysis, and one with stacked profiles. Our findings show that the coupling length is typically very small, thus being fully consistent with general relativity, although with an upper limit at <span>\\\\(1\\\\sigma \\\\)</span> which is of the order of 100 kpc.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13956-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-13956-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13956-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Nonminimally coupled dark matter in clusters of galaxies: a fully comprehensive analysis
In this study, we explore how a non-minimal coupling between dark matter and gravity can affect the behavior of dark matter in galaxy clusters. We have considered the case of a disformal coupling, which leads to a modification of the Poisson equation. Building on an earlier work, we expand the analysis considering all possible disformal coupling scenarios and employing various dark matter density profiles. In doing so, we aim to constrain the key parameter in our model, the characteristic coupling length. To achieve this, we analyze data from a combination of strong and weak lensing using three statistical approaches: a single cluster fitting procedure, a joint analysis, and one with stacked profiles. Our findings show that the coupling length is typically very small, thus being fully consistent with general relativity, although with an upper limit at \(1\sigma \) which is of the order of 100 kpc.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.