\(m-\)对称算子类的新推广

Q2 Mathematics
Souhaib Djaballah, Messaoud Guesba
{"title":"\\(m-\\)对称算子类的新推广","authors":"Souhaib Djaballah,&nbsp;Messaoud Guesba","doi":"10.1007/s11565-025-00585-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we define and study a new class of bounded linear operators which is a generalization of the class of <span>\\(m-\\)</span>symmetric operators. Let <i>m</i> be a strictly positive integer number and <span>\\(U\\in {\\mathcal {B}}({\\mathcal {H}})\\)</span> is a unitary operator, an operator <span>\\(T\\in {\\mathcal {B}}({\\mathcal {H}})\\)</span> is said to be a <span>\\((U,m)-\\)</span>symmetry if it commutes with <i>U</i> such that </p><div><div><span>$$\\begin{aligned} \\sum _{k=0}^m (-1)^{k}\\left( \\begin{array}{l} m \\\\ k \\end{array}\\right) T^{*(m-k)}T^{k}U^{k}=0. \\end{aligned}$$</span></div></div><p>It is shown that if <i>T</i> is a <span>\\((U,m)-\\)</span>symmetry, then <span>\\(T^{p}\\)</span> is a <span>\\((U^{p},m)-\\)</span>symmetry. We study the product and the sum of such a class. Moreover, if <i>T</i> is a <span>\\((U,m)-\\)</span>symmetry and <i>m</i> is even, we obtain that <i>T</i> is a <span>\\((U,m-1)-\\)</span>symmetry. We prove that if <i>Q</i> is a nilpotent operator of order <i>n</i> which commutes with both <i>T</i> and <i>U</i>, then <span>\\(T+Q\\)</span> is a <span>\\((U,m+2n-2)-\\)</span>symmetry. Also, we give some spectral properties of <span>\\((U,m)-\\)</span>symmetric operators. Finally, we show further results concerning this class of operators on a finite dimensional Hilbert space.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new generalization of the class of \\\\(m-\\\\)symmetric operators\",\"authors\":\"Souhaib Djaballah,&nbsp;Messaoud Guesba\",\"doi\":\"10.1007/s11565-025-00585-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we define and study a new class of bounded linear operators which is a generalization of the class of <span>\\\\(m-\\\\)</span>symmetric operators. Let <i>m</i> be a strictly positive integer number and <span>\\\\(U\\\\in {\\\\mathcal {B}}({\\\\mathcal {H}})\\\\)</span> is a unitary operator, an operator <span>\\\\(T\\\\in {\\\\mathcal {B}}({\\\\mathcal {H}})\\\\)</span> is said to be a <span>\\\\((U,m)-\\\\)</span>symmetry if it commutes with <i>U</i> such that </p><div><div><span>$$\\\\begin{aligned} \\\\sum _{k=0}^m (-1)^{k}\\\\left( \\\\begin{array}{l} m \\\\\\\\ k \\\\end{array}\\\\right) T^{*(m-k)}T^{k}U^{k}=0. \\\\end{aligned}$$</span></div></div><p>It is shown that if <i>T</i> is a <span>\\\\((U,m)-\\\\)</span>symmetry, then <span>\\\\(T^{p}\\\\)</span> is a <span>\\\\((U^{p},m)-\\\\)</span>symmetry. We study the product and the sum of such a class. Moreover, if <i>T</i> is a <span>\\\\((U,m)-\\\\)</span>symmetry and <i>m</i> is even, we obtain that <i>T</i> is a <span>\\\\((U,m-1)-\\\\)</span>symmetry. We prove that if <i>Q</i> is a nilpotent operator of order <i>n</i> which commutes with both <i>T</i> and <i>U</i>, then <span>\\\\(T+Q\\\\)</span> is a <span>\\\\((U,m+2n-2)-\\\\)</span>symmetry. Also, we give some spectral properties of <span>\\\\((U,m)-\\\\)</span>symmetric operators. Finally, we show further results concerning this class of operators on a finite dimensional Hilbert space.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00585-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00585-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文定义并研究了一类新的有界线性算子,它是\(m-\)对称算子类的推广。设m是一个严格正整数,\(U\in {\mathcal {B}}({\mathcal {H}})\)是一个酉算子,如果一个算子\(T\in {\mathcal {B}}({\mathcal {H}})\)与U交换使得$$\begin{aligned} \sum _{k=0}^m (-1)^{k}\left( \begin{array}{l} m \\ k \end{array}\right) T^{*(m-k)}T^{k}U^{k}=0. \end{aligned}$$,则称其为\((U,m)-\)对称,表明如果T是\((U,m)-\)对称,则\(T^{p}\)是\((U^{p},m)-\)对称。我们研究这一类的乘积和。此外,如果T是\((U,m)-\)对称且m是偶对称,我们得到T是\((U,m-1)-\)对称。我们证明如果Q是一个n阶的幂零算子,它能与T和U交换,那么\(T+Q\)是一个\((U,m+2n-2)-\)对称。同时给出了\((U,m)-\)对称算子的一些谱性质。最后,我们给出了有限维Hilbert空间上这类算子的进一步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new generalization of the class of \(m-\)symmetric operators

In this paper, we define and study a new class of bounded linear operators which is a generalization of the class of \(m-\)symmetric operators. Let m be a strictly positive integer number and \(U\in {\mathcal {B}}({\mathcal {H}})\) is a unitary operator, an operator \(T\in {\mathcal {B}}({\mathcal {H}})\) is said to be a \((U,m)-\)symmetry if it commutes with U such that

$$\begin{aligned} \sum _{k=0}^m (-1)^{k}\left( \begin{array}{l} m \\ k \end{array}\right) T^{*(m-k)}T^{k}U^{k}=0. \end{aligned}$$

It is shown that if T is a \((U,m)-\)symmetry, then \(T^{p}\) is a \((U^{p},m)-\)symmetry. We study the product and the sum of such a class. Moreover, if T is a \((U,m)-\)symmetry and m is even, we obtain that T is a \((U,m-1)-\)symmetry. We prove that if Q is a nilpotent operator of order n which commutes with both T and U, then \(T+Q\) is a \((U,m+2n-2)-\)symmetry. Also, we give some spectral properties of \((U,m)-\)symmetric operators. Finally, we show further results concerning this class of operators on a finite dimensional Hilbert space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信