通过强化空间结构信息学习局部特征

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Li Wang;Yunzhou Zhang;Fawei Ge;Wenjing Bai;Yifan Wang
{"title":"通过强化空间结构信息学习局部特征","authors":"Li Wang;Yunzhou Zhang;Fawei Ge;Wenjing Bai;Yifan Wang","doi":"10.1109/TMM.2024.3521777","DOIUrl":null,"url":null,"abstract":"Learning-based local feature extraction algorithms have advanced considerably in terms of robustness. While excelling at enhancing feature robustness, some outstanding algorithms tend to neglect discriminability—a crucial aspect in vision tasks. With the increase of deep learning convolutional layers, we observe an amplification of semantic information within images, accompanied by a diminishing presence of spatial structural information. This imbalance primarily contributes to the subpar feature discriminability. Therefore, this paper introduces a novel network framework aimed at imbuing feature descriptors with robustness and discriminative power by reinforcing spatial structural information. Our approach incorporates a spatial structure enhancement module into the network architecture, spanning from shallow to deep layers, ensuring the retention of rich structural information in deeper layers, thereby enhancing discriminability. Finally, we evaluate our method, demonstrating superior performance in visual localization and feature-matching tasks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1420-1431"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Local Features by Reinforcing Spatial Structure Information\",\"authors\":\"Li Wang;Yunzhou Zhang;Fawei Ge;Wenjing Bai;Yifan Wang\",\"doi\":\"10.1109/TMM.2024.3521777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning-based local feature extraction algorithms have advanced considerably in terms of robustness. While excelling at enhancing feature robustness, some outstanding algorithms tend to neglect discriminability—a crucial aspect in vision tasks. With the increase of deep learning convolutional layers, we observe an amplification of semantic information within images, accompanied by a diminishing presence of spatial structural information. This imbalance primarily contributes to the subpar feature discriminability. Therefore, this paper introduces a novel network framework aimed at imbuing feature descriptors with robustness and discriminative power by reinforcing spatial structural information. Our approach incorporates a spatial structure enhancement module into the network architecture, spanning from shallow to deep layers, ensuring the retention of rich structural information in deeper layers, thereby enhancing discriminability. Finally, we evaluate our method, demonstrating superior performance in visual localization and feature-matching tasks.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"1420-1431\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10817619/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817619/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于学习的局部特征提取算法在鲁棒性方面取得了长足的进步。虽然在增强特征鲁棒性方面表现出色,但一些优秀的算法往往忽略了视觉任务的关键方面——可判别性。随着深度学习卷积层的增加,我们观察到图像中语义信息的放大,伴随着空间结构信息的减少。这种不平衡主要导致了特征可辨别性欠佳。因此,本文引入了一种新的网络框架,旨在通过增强空间结构信息来增强特征描述符的鲁棒性和判别能力。我们的方法将空间结构增强模块集成到网络架构中,从浅层到深层,确保在更深层保留丰富的结构信息,从而增强可辨别性。最后,我们评估了我们的方法,证明了在视觉定位和特征匹配任务中的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Local Features by Reinforcing Spatial Structure Information
Learning-based local feature extraction algorithms have advanced considerably in terms of robustness. While excelling at enhancing feature robustness, some outstanding algorithms tend to neglect discriminability—a crucial aspect in vision tasks. With the increase of deep learning convolutional layers, we observe an amplification of semantic information within images, accompanied by a diminishing presence of spatial structural information. This imbalance primarily contributes to the subpar feature discriminability. Therefore, this paper introduces a novel network framework aimed at imbuing feature descriptors with robustness and discriminative power by reinforcing spatial structural information. Our approach incorporates a spatial structure enhancement module into the network architecture, spanning from shallow to deep layers, ensuring the retention of rich structural information in deeper layers, thereby enhancing discriminability. Finally, we evaluate our method, demonstrating superior performance in visual localization and feature-matching tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信