利用以对象为中心的伪向导进行弱监督参考视频对象分割

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weikang Wang;Yuting Su;Jing Liu;Wei Sun;Guangtao Zhai
{"title":"利用以对象为中心的伪向导进行弱监督参考视频对象分割","authors":"Weikang Wang;Yuting Su;Jing Liu;Wei Sun;Guangtao Zhai","doi":"10.1109/TMM.2024.3521741","DOIUrl":null,"url":null,"abstract":"Referring video object segmentation (RVOS) is an emerging task for multimodal video comprehension while the expensive annotating process of object masks restricts the scalability and diversity of RVOS datasets. To relax the dependency on expensive mask annotations and take advantage from large-scale partially annotated data, in this paper, we explore a novel extended RVOS task, namely weakly supervised referring video object segmentation (WRVOS), which employs multiple weak supervision sources, including object points and bounding boxes. Correspondingly, we propose a unified WRVOS framework. Specifically, an object-centric pseudo mask generation method is introduced to provide effective shape priors for the pseudo guidance of spatial object location. Then, a pseudo-guided optimization strategy is proposed to effectively optimize the object outlines in terms of spatial location and projection density with a multi-stage online learning strategy. Furthermore, a multimodal cross-frame level set evolution method is proposed to iteratively refine the object boundaries considering both temporal consistency and cross-modal interactions. Extensive experiments are conducted on four publicly available RVOS datasets, including A2D Sentences, J-HMDB Sentences, Ref-DAVIS, and Ref-YoutubeVOS. Performance comparison shows that the proposed method achieves state-of-the-art performance in both point-supervised and box-supervised settings.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"1320-1333"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly Supervised Referring Video Object Segmentation With Object-Centric Pseudo-Guidance\",\"authors\":\"Weikang Wang;Yuting Su;Jing Liu;Wei Sun;Guangtao Zhai\",\"doi\":\"10.1109/TMM.2024.3521741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Referring video object segmentation (RVOS) is an emerging task for multimodal video comprehension while the expensive annotating process of object masks restricts the scalability and diversity of RVOS datasets. To relax the dependency on expensive mask annotations and take advantage from large-scale partially annotated data, in this paper, we explore a novel extended RVOS task, namely weakly supervised referring video object segmentation (WRVOS), which employs multiple weak supervision sources, including object points and bounding boxes. Correspondingly, we propose a unified WRVOS framework. Specifically, an object-centric pseudo mask generation method is introduced to provide effective shape priors for the pseudo guidance of spatial object location. Then, a pseudo-guided optimization strategy is proposed to effectively optimize the object outlines in terms of spatial location and projection density with a multi-stage online learning strategy. Furthermore, a multimodal cross-frame level set evolution method is proposed to iteratively refine the object boundaries considering both temporal consistency and cross-modal interactions. Extensive experiments are conducted on four publicly available RVOS datasets, including A2D Sentences, J-HMDB Sentences, Ref-DAVIS, and Ref-YoutubeVOS. Performance comparison shows that the proposed method achieves state-of-the-art performance in both point-supervised and box-supervised settings.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"1320-1333\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812857/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812857/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly Supervised Referring Video Object Segmentation With Object-Centric Pseudo-Guidance
Referring video object segmentation (RVOS) is an emerging task for multimodal video comprehension while the expensive annotating process of object masks restricts the scalability and diversity of RVOS datasets. To relax the dependency on expensive mask annotations and take advantage from large-scale partially annotated data, in this paper, we explore a novel extended RVOS task, namely weakly supervised referring video object segmentation (WRVOS), which employs multiple weak supervision sources, including object points and bounding boxes. Correspondingly, we propose a unified WRVOS framework. Specifically, an object-centric pseudo mask generation method is introduced to provide effective shape priors for the pseudo guidance of spatial object location. Then, a pseudo-guided optimization strategy is proposed to effectively optimize the object outlines in terms of spatial location and projection density with a multi-stage online learning strategy. Furthermore, a multimodal cross-frame level set evolution method is proposed to iteratively refine the object boundaries considering both temporal consistency and cross-modal interactions. Extensive experiments are conducted on four publicly available RVOS datasets, including A2D Sentences, J-HMDB Sentences, Ref-DAVIS, and Ref-YoutubeVOS. Performance comparison shows that the proposed method achieves state-of-the-art performance in both point-supervised and box-supervised settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信