通过先进技术实现心脏修复和再生:文献综述。

Yugyung Lee, Sushil Shelke, Chi Lee
{"title":"通过先进技术实现心脏修复和再生:文献综述。","authors":"Yugyung Lee, Sushil Shelke, Chi Lee","doi":"10.2196/65366","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases (CVDs) are the leading cause of death globally, and almost one-half of all adults in the United States have at least one form of heart disease. This review focused on advanced technologies, genetic variables in CVD, and biomaterials used for organ-independent cardiovascular repair systems.</p><p><strong>Objective: </strong>A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the management of CVD in advanced clinical practice.</p><p><strong>Methods: </strong>This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science. Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The innovative bioengineering, gene delivery, cell biology, and artificial intelligence-based technologies that will continuously revolutionize biomedical devices for cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary, query-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD.</p><p><strong>Results: </strong>Advanced technologies along with artificial intelligence-based telehealth will be essential to create efficient implantable biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and treatment of CVD risk.</p><p><strong>Conclusions: </strong>To overcome the current obstacles in cardiac repair and regeneration and achieve successful therapeutic applications, future interdisciplinary collaborative work is essential. Novel cardiovascular devices and their targeted treatments will accomplish enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as a first outline of the updated progress on cardiovascular devices before undertaking clinical studies.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"10 ","pages":"e65366"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac Repair and Regeneration via Advanced Technology: Narrative Literature Review.\",\"authors\":\"Yugyung Lee, Sushil Shelke, Chi Lee\",\"doi\":\"10.2196/65366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiovascular diseases (CVDs) are the leading cause of death globally, and almost one-half of all adults in the United States have at least one form of heart disease. This review focused on advanced technologies, genetic variables in CVD, and biomaterials used for organ-independent cardiovascular repair systems.</p><p><strong>Objective: </strong>A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the management of CVD in advanced clinical practice.</p><p><strong>Methods: </strong>This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science. Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The innovative bioengineering, gene delivery, cell biology, and artificial intelligence-based technologies that will continuously revolutionize biomedical devices for cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary, query-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD.</p><p><strong>Results: </strong>Advanced technologies along with artificial intelligence-based telehealth will be essential to create efficient implantable biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and treatment of CVD risk.</p><p><strong>Conclusions: </strong>To overcome the current obstacles in cardiac repair and regeneration and achieve successful therapeutic applications, future interdisciplinary collaborative work is essential. Novel cardiovascular devices and their targeted treatments will accomplish enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as a first outline of the updated progress on cardiovascular devices before undertaking clinical studies.</p>\",\"PeriodicalId\":87288,\"journal\":{\"name\":\"JMIR biomedical engineering\",\"volume\":\"10 \",\"pages\":\"e65366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/65366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/65366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac Repair and Regeneration via Advanced Technology: Narrative Literature Review.

Background: Cardiovascular diseases (CVDs) are the leading cause of death globally, and almost one-half of all adults in the United States have at least one form of heart disease. This review focused on advanced technologies, genetic variables in CVD, and biomaterials used for organ-independent cardiovascular repair systems.

Objective: A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the management of CVD in advanced clinical practice.

Methods: This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science. Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The innovative bioengineering, gene delivery, cell biology, and artificial intelligence-based technologies that will continuously revolutionize biomedical devices for cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary, query-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD.

Results: Advanced technologies along with artificial intelligence-based telehealth will be essential to create efficient implantable biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and treatment of CVD risk.

Conclusions: To overcome the current obstacles in cardiac repair and regeneration and achieve successful therapeutic applications, future interdisciplinary collaborative work is essential. Novel cardiovascular devices and their targeted treatments will accomplish enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as a first outline of the updated progress on cardiovascular devices before undertaking clinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信