COVID-19 疫苗试验中的数据互操作性:VACCELERATE 项目的方法论。

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Salma Malik, Zoi Pana Dorothea, Christos D Argyropoulos, Sophia Themistocleous, Alan J Macken, Olena Valdenmaiier, Frank Scheckenbach, Elena Bardach, Andrea Pfeiffer, Katherine Loens, Jordi Cano Ochando, Oliver A Cornely, Jacques Demotes-Mainard, Sergio Contrino, Gerd Felder
{"title":"COVID-19 疫苗试验中的数据互操作性:VACCELERATE 项目的方法论。","authors":"Salma Malik, Zoi Pana Dorothea, Christos D Argyropoulos, Sophia Themistocleous, Alan J Macken, Olena Valdenmaiier, Frank Scheckenbach, Elena Bardach, Andrea Pfeiffer, Katherine Loens, Jordi Cano Ochando, Oliver A Cornely, Jacques Demotes-Mainard, Sergio Contrino, Gerd Felder","doi":"10.2196/65590","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Data standards are not only key to making data processing efficient but also fundamental to ensuring data interoperability. When clinical trial data are structured according to international standards, they become significantly easier to analyze, reducing the efforts required for data cleaning, preprocessing, and secondary use. A common language and a shared set of expectations facilitate interoperability between systems and devices.</p><p><strong>Objective: </strong>The main objectives of this study were to identify commonalities and differences in clinical trial metadata, protocols, and data collection systems/items within the VACCELERATE project.</p><p><strong>Methods: </strong>To assess the degree of interoperability achieved in the project and suggest methodological improvements, interoperable points were identified based on the core outcome areas-immunogenicity, safety, and efficacy (clinical/physiological). These points were emphasized in the development of the master protocol template and were manually compared in the following ways: (1) summaries, objectives, and end points in the protocols of 3 VACCELERATE clinical trials (EU-COVAT-1_AGED, EU-COVAT-2_BOOSTAVAC, and EU-COVPT-1_CoVacc) against the master protocol template; (2) metadata of all 3 clinical trials; and (3) evaluations from a questionnaire survey regarding differences in data management systems and structures that enabled data exchange within the VACCELERATE network.</p><p><strong>Results: </strong>The noncommonalities identified in the protocols and metadata were attributed to differences in populations, variations in protocol design, and vaccination patterns. The detailed metadata released for all 3 vaccine trials were clearly structured using internal standards, terminology, and the general approach of Clinical Data Acquisition Standards Harmonisation (CDASH) for data collection (eg, on electronic case report forms). VACCELERATE benefited significantly from the selection of the Clinical Trials Centre Cologne as the sole data management provider. With system database development coordinated by a single individual and no need for coordination among different trial units, a high degree of uniformity was achieved automatically. The harmonized transfer of data to all sites, using well-established methods, enabled quick exchanges and provided a relatively secure means of data transfer.</p><p><strong>Conclusions: </strong>This study demonstrated that using master protocols can significantly enhance trial operational efficiency and data interoperability, provided that similar infrastructure and data management procedures are adopted across multiple trials. To further improve data interoperability and facilitate interpretation and analysis, shared data should be structured, described, formatted, and stored using widely recognized data and metadata standards.</p><p><strong>Trial registration: </strong>EudraCT 2021-004526-29; https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-004526-29/DE/; 2021-004889-35; https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2021-004889-35; and 2021-004526-29; https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2021-004526-29.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e65590"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Interoperability in COVID-19 Vaccine Trials: Methodological Approach in the VACCELERATE Project.\",\"authors\":\"Salma Malik, Zoi Pana Dorothea, Christos D Argyropoulos, Sophia Themistocleous, Alan J Macken, Olena Valdenmaiier, Frank Scheckenbach, Elena Bardach, Andrea Pfeiffer, Katherine Loens, Jordi Cano Ochando, Oliver A Cornely, Jacques Demotes-Mainard, Sergio Contrino, Gerd Felder\",\"doi\":\"10.2196/65590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Data standards are not only key to making data processing efficient but also fundamental to ensuring data interoperability. When clinical trial data are structured according to international standards, they become significantly easier to analyze, reducing the efforts required for data cleaning, preprocessing, and secondary use. A common language and a shared set of expectations facilitate interoperability between systems and devices.</p><p><strong>Objective: </strong>The main objectives of this study were to identify commonalities and differences in clinical trial metadata, protocols, and data collection systems/items within the VACCELERATE project.</p><p><strong>Methods: </strong>To assess the degree of interoperability achieved in the project and suggest methodological improvements, interoperable points were identified based on the core outcome areas-immunogenicity, safety, and efficacy (clinical/physiological). These points were emphasized in the development of the master protocol template and were manually compared in the following ways: (1) summaries, objectives, and end points in the protocols of 3 VACCELERATE clinical trials (EU-COVAT-1_AGED, EU-COVAT-2_BOOSTAVAC, and EU-COVPT-1_CoVacc) against the master protocol template; (2) metadata of all 3 clinical trials; and (3) evaluations from a questionnaire survey regarding differences in data management systems and structures that enabled data exchange within the VACCELERATE network.</p><p><strong>Results: </strong>The noncommonalities identified in the protocols and metadata were attributed to differences in populations, variations in protocol design, and vaccination patterns. The detailed metadata released for all 3 vaccine trials were clearly structured using internal standards, terminology, and the general approach of Clinical Data Acquisition Standards Harmonisation (CDASH) for data collection (eg, on electronic case report forms). VACCELERATE benefited significantly from the selection of the Clinical Trials Centre Cologne as the sole data management provider. With system database development coordinated by a single individual and no need for coordination among different trial units, a high degree of uniformity was achieved automatically. The harmonized transfer of data to all sites, using well-established methods, enabled quick exchanges and provided a relatively secure means of data transfer.</p><p><strong>Conclusions: </strong>This study demonstrated that using master protocols can significantly enhance trial operational efficiency and data interoperability, provided that similar infrastructure and data management procedures are adopted across multiple trials. To further improve data interoperability and facilitate interpretation and analysis, shared data should be structured, described, formatted, and stored using widely recognized data and metadata standards.</p><p><strong>Trial registration: </strong>EudraCT 2021-004526-29; https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-004526-29/DE/; 2021-004889-35; https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2021-004889-35; and 2021-004526-29; https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2021-004526-29.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"13 \",\"pages\":\"e65590\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/65590\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/65590","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Interoperability in COVID-19 Vaccine Trials: Methodological Approach in the VACCELERATE Project.

Background: Data standards are not only key to making data processing efficient but also fundamental to ensuring data interoperability. When clinical trial data are structured according to international standards, they become significantly easier to analyze, reducing the efforts required for data cleaning, preprocessing, and secondary use. A common language and a shared set of expectations facilitate interoperability between systems and devices.

Objective: The main objectives of this study were to identify commonalities and differences in clinical trial metadata, protocols, and data collection systems/items within the VACCELERATE project.

Methods: To assess the degree of interoperability achieved in the project and suggest methodological improvements, interoperable points were identified based on the core outcome areas-immunogenicity, safety, and efficacy (clinical/physiological). These points were emphasized in the development of the master protocol template and were manually compared in the following ways: (1) summaries, objectives, and end points in the protocols of 3 VACCELERATE clinical trials (EU-COVAT-1_AGED, EU-COVAT-2_BOOSTAVAC, and EU-COVPT-1_CoVacc) against the master protocol template; (2) metadata of all 3 clinical trials; and (3) evaluations from a questionnaire survey regarding differences in data management systems and structures that enabled data exchange within the VACCELERATE network.

Results: The noncommonalities identified in the protocols and metadata were attributed to differences in populations, variations in protocol design, and vaccination patterns. The detailed metadata released for all 3 vaccine trials were clearly structured using internal standards, terminology, and the general approach of Clinical Data Acquisition Standards Harmonisation (CDASH) for data collection (eg, on electronic case report forms). VACCELERATE benefited significantly from the selection of the Clinical Trials Centre Cologne as the sole data management provider. With system database development coordinated by a single individual and no need for coordination among different trial units, a high degree of uniformity was achieved automatically. The harmonized transfer of data to all sites, using well-established methods, enabled quick exchanges and provided a relatively secure means of data transfer.

Conclusions: This study demonstrated that using master protocols can significantly enhance trial operational efficiency and data interoperability, provided that similar infrastructure and data management procedures are adopted across multiple trials. To further improve data interoperability and facilitate interpretation and analysis, shared data should be structured, described, formatted, and stored using widely recognized data and metadata standards.

Trial registration: EudraCT 2021-004526-29; https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-004526-29/DE/; 2021-004889-35; https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2021-004889-35; and 2021-004526-29; https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2021-004526-29.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信