Xiufen Zheng, Zedong Sun, Shi Wang, Qibing Liu, Biqing Zhu, Zhijian Ren, Dingwei Fan, Chunping Zhang, Xinyin Fu, Yan Jin, Jing Luo, Jie Wang, Binhui Ren
{"title":"SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop.","authors":"Xiufen Zheng, Zedong Sun, Shi Wang, Qibing Liu, Biqing Zhu, Zhijian Ren, Dingwei Fan, Chunping Zhang, Xinyin Fu, Yan Jin, Jing Luo, Jie Wang, Binhui Ren","doi":"10.1007/s11010-025-05242-x","DOIUrl":null,"url":null,"abstract":"<p><p>Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05242-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop.
Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.