Maxim Gvozdev, Iveta Turomsha, Nikolai Osipovich, Galina Ksendzova, Alina Khodosovskaya, Anton Siomchen, Janusz M Dąbrowski, Natalia Loginova
{"title":"源自脂肪族胺的希夫碱铋(III)配合物:与生物大分子的相互作用及抗菌活性。","authors":"Maxim Gvozdev, Iveta Turomsha, Nikolai Osipovich, Galina Ksendzova, Alina Khodosovskaya, Anton Siomchen, Janusz M Dąbrowski, Natalia Loginova","doi":"10.1007/s00775-025-02107-y","DOIUrl":null,"url":null,"abstract":"<p><p>Schiff bases bearing a sterically hindered phenolic moiety and their Bi(III) complexes were synthesized and characterized by physicochemical, quantum chemical, and biological methods. The compounds were screened in vitro against bacterial and yeast strains. It was found that Bi(III) complexes demonstrate higher antimicrobial activity compared to the parent ligands as well as to the commonly used drug (De-Nol®). Moreover, the antibacterial activity of investigated compounds did not directly correlate with their hemolytic activity, indicating that the antimicrobial effect of Bi(III) complexes cannot be explained solely by their membranolytic properties. Spectrofluorometric studies of the interaction of the Bi(III) complexes with plasma proteins indicate their moderate to high affinity toward BSA and hemoglobin, which is crucial for the determination of their pharmacological profile as well as toxicity assessment. Additionally, molecular docking was performed to predict the possible interaction modes and binding energies of the tested compounds at the molecular level. The results obtained may provide the basis for the design and development of novel Bi(III)-based antimicrobial agents.</p>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth(III) complexes of Schiff bases derived from aliphatic amines: interaction with biomolecules and antimicrobial activity.\",\"authors\":\"Maxim Gvozdev, Iveta Turomsha, Nikolai Osipovich, Galina Ksendzova, Alina Khodosovskaya, Anton Siomchen, Janusz M Dąbrowski, Natalia Loginova\",\"doi\":\"10.1007/s00775-025-02107-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schiff bases bearing a sterically hindered phenolic moiety and their Bi(III) complexes were synthesized and characterized by physicochemical, quantum chemical, and biological methods. The compounds were screened in vitro against bacterial and yeast strains. It was found that Bi(III) complexes demonstrate higher antimicrobial activity compared to the parent ligands as well as to the commonly used drug (De-Nol®). Moreover, the antibacterial activity of investigated compounds did not directly correlate with their hemolytic activity, indicating that the antimicrobial effect of Bi(III) complexes cannot be explained solely by their membranolytic properties. Spectrofluorometric studies of the interaction of the Bi(III) complexes with plasma proteins indicate their moderate to high affinity toward BSA and hemoglobin, which is crucial for the determination of their pharmacological profile as well as toxicity assessment. Additionally, molecular docking was performed to predict the possible interaction modes and binding energies of the tested compounds at the molecular level. The results obtained may provide the basis for the design and development of novel Bi(III)-based antimicrobial agents.</p>\",\"PeriodicalId\":603,\"journal\":{\"name\":\"Journal of Biological Inorganic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1007/s00775-025-02107-y\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-025-02107-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bismuth(III) complexes of Schiff bases derived from aliphatic amines: interaction with biomolecules and antimicrobial activity.
Schiff bases bearing a sterically hindered phenolic moiety and their Bi(III) complexes were synthesized and characterized by physicochemical, quantum chemical, and biological methods. The compounds were screened in vitro against bacterial and yeast strains. It was found that Bi(III) complexes demonstrate higher antimicrobial activity compared to the parent ligands as well as to the commonly used drug (De-Nol®). Moreover, the antibacterial activity of investigated compounds did not directly correlate with their hemolytic activity, indicating that the antimicrobial effect of Bi(III) complexes cannot be explained solely by their membranolytic properties. Spectrofluorometric studies of the interaction of the Bi(III) complexes with plasma proteins indicate their moderate to high affinity toward BSA and hemoglobin, which is crucial for the determination of their pharmacological profile as well as toxicity assessment. Additionally, molecular docking was performed to predict the possible interaction modes and binding energies of the tested compounds at the molecular level. The results obtained may provide the basis for the design and development of novel Bi(III)-based antimicrobial agents.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.