基于k -滤波器的多智能体系统自适应事件触发输出反馈一致性跟踪控制

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Tianping Zhang, Yanan Duan
{"title":"基于k -滤波器的多智能体系统自适应事件触发输出反馈一致性跟踪控制","authors":"Tianping Zhang,&nbsp;Yanan Duan","doi":"10.1002/rnc.7801","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, the issue of adaptive event-triggered output feedback consensus tracking dynamic surface control is discussed for nonlinear multi-agent systems (MASs) with unmodeled dynamics. The system states are estimated via K-filters. The unknown nonlinear continuous functions are approximated using radial basis function neural networks (RBFNNs). To lighten the load on communication, an event-triggered control (ETC) method with a relative threshold is developed. By using command filter backstepping technology, a unique adaptive consensus tracking control strategy is presented. Then, through Lyapunov stability analysis, all signals in the closed-loop system can be guaranteed to be semi-globally uniformly ultimately bounded (SGUUB), and the Zeno phenomenon can be avoided. Finally, simulation results validate the effectiveness of the proposed method.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 6","pages":"2354-2366"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Event-Triggered Output Feedback Consensus Tracking Control of Multi-Agent Systems via K-Filters\",\"authors\":\"Tianping Zhang,&nbsp;Yanan Duan\",\"doi\":\"10.1002/rnc.7801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, the issue of adaptive event-triggered output feedback consensus tracking dynamic surface control is discussed for nonlinear multi-agent systems (MASs) with unmodeled dynamics. The system states are estimated via K-filters. The unknown nonlinear continuous functions are approximated using radial basis function neural networks (RBFNNs). To lighten the load on communication, an event-triggered control (ETC) method with a relative threshold is developed. By using command filter backstepping technology, a unique adaptive consensus tracking control strategy is presented. Then, through Lyapunov stability analysis, all signals in the closed-loop system can be guaranteed to be semi-globally uniformly ultimately bounded (SGUUB), and the Zeno phenomenon can be avoided. Finally, simulation results validate the effectiveness of the proposed method.</p>\\n </div>\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"35 6\",\"pages\":\"2354-2366\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7801\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7801","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有未建模动力学的非线性多智能体系统的自适应事件触发输出反馈一致跟踪动态面控制问题。通过k滤波器估计系统状态。利用径向基函数神经网络(RBFNNs)逼近未知的非线性连续函数。为了减轻通信负荷,提出了一种带有相对阈值的事件触发控制(ETC)方法。采用命令滤波反步技术,提出了一种独特的自适应一致跟踪控制策略。然后,通过Lyapunov稳定性分析,可以保证闭环系统中的所有信号都是半全局一致最终有界的(SGUUB),从而避免了Zeno现象。最后,仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Event-Triggered Output Feedback Consensus Tracking Control of Multi-Agent Systems via K-Filters

In this paper, the issue of adaptive event-triggered output feedback consensus tracking dynamic surface control is discussed for nonlinear multi-agent systems (MASs) with unmodeled dynamics. The system states are estimated via K-filters. The unknown nonlinear continuous functions are approximated using radial basis function neural networks (RBFNNs). To lighten the load on communication, an event-triggered control (ETC) method with a relative threshold is developed. By using command filter backstepping technology, a unique adaptive consensus tracking control strategy is presented. Then, through Lyapunov stability analysis, all signals in the closed-loop system can be guaranteed to be semi-globally uniformly ultimately bounded (SGUUB), and the Zeno phenomenon can be avoided. Finally, simulation results validate the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信