最小行为可采原则

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
H. Gimperlein, M. Grinfeld, R. J. Knops, M. Slemrod
{"title":"最小行为可采原则","authors":"H. Gimperlein,&nbsp;M. Grinfeld,&nbsp;R. J. Knops,&nbsp;M. Slemrod","doi":"10.1007/s00205-025-02094-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a new admissibility criterion for choosing physically relevant weak solutions of the equations of Lagrangian and continuum mechanics when non-uniqueness of solutions to the initial value problem occurs. The criterion is motivated by the classical least action principle but is now applied to initial value problems which exhibit non-unique solutions. Examples are provided for Lagrangian mechanics and the Euler equations of barotropic fluid mechanics. In particular, we show that the least action admissibility principle prefers the classical two shock solution to the Riemann initial value problem to certain solutions generated by convex integration. On the other hand, Dafermos’s entropy criterion prefers convex integration solutions to the two shock solutions. Furthermore, when the pressure is given by <span>\\(p(\\rho )=\\rho ^2\\)</span>, we show that the two shock solution is always preferred whenever the convex integration solutions are defined for the same initial data.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Least Action Admissibility Principle\",\"authors\":\"H. Gimperlein,&nbsp;M. Grinfeld,&nbsp;R. J. Knops,&nbsp;M. Slemrod\",\"doi\":\"10.1007/s00205-025-02094-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper provides a new admissibility criterion for choosing physically relevant weak solutions of the equations of Lagrangian and continuum mechanics when non-uniqueness of solutions to the initial value problem occurs. The criterion is motivated by the classical least action principle but is now applied to initial value problems which exhibit non-unique solutions. Examples are provided for Lagrangian mechanics and the Euler equations of barotropic fluid mechanics. In particular, we show that the least action admissibility principle prefers the classical two shock solution to the Riemann initial value problem to certain solutions generated by convex integration. On the other hand, Dafermos’s entropy criterion prefers convex integration solutions to the two shock solutions. Furthermore, when the pressure is given by <span>\\\\(p(\\\\rho )=\\\\rho ^2\\\\)</span>, we show that the two shock solution is always preferred whenever the convex integration solutions are defined for the same initial data.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02094-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02094-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了拉格朗日和连续介质力学方程初值问题解存在非唯一性时选择物理相关弱解的一个新的容许准则。该准则是由经典的最小作用原理驱动的,但现在应用于具有非唯一解的初值问题。给出了拉格朗日力学和正压流体力学的欧拉方程的例子。特别地,我们证明了最小作用容许原理更倾向于Riemann初值问题的经典双激波解,而不是由凸积分生成的某些解。另一方面,Dafermos熵准则更倾向于凸积分解而不是两个激波解。此外,当压力由\(p(\rho )=\rho ^2\)给出时,我们表明,每当为相同的初始数据定义凸积分解时,双激波解总是首选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Least Action Admissibility Principle

The Least Action Admissibility Principle

This paper provides a new admissibility criterion for choosing physically relevant weak solutions of the equations of Lagrangian and continuum mechanics when non-uniqueness of solutions to the initial value problem occurs. The criterion is motivated by the classical least action principle but is now applied to initial value problems which exhibit non-unique solutions. Examples are provided for Lagrangian mechanics and the Euler equations of barotropic fluid mechanics. In particular, we show that the least action admissibility principle prefers the classical two shock solution to the Riemann initial value problem to certain solutions generated by convex integration. On the other hand, Dafermos’s entropy criterion prefers convex integration solutions to the two shock solutions. Furthermore, when the pressure is given by \(p(\rho )=\rho ^2\), we show that the two shock solution is always preferred whenever the convex integration solutions are defined for the same initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信