含二胺镍基复合材料:分子动力学

IF 0.6 4区 工程技术 Q4 MECHANICS
P. V. Polyakova
{"title":"含二胺镍基复合材料:分子动力学","authors":"P. V. Polyakova","doi":"10.1134/S0025654424606384","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of technology and industry requires the search of new materials which combine high strength, light weight and corrosion resistance. Metal matrix composites reinforced with two-dimensional carbon allotropes exhibit impressive mechanical, physical and tribological properties. Diamane, a two-dimensional diamond, is a very promising material for the production of thin, ultra-high strength coatings and as the reinforcement for metal matrix composites. Simulation methods can considerably improve understanding of the interaction between the diamane and metal phase. Molecular dynamics allow to analyse different properties of new materials on the atomistic level. In the present work, the mechanical properties of new composite – nickel reinforced with diamane – are investigated by molecular dynamics simulation. The structural changes in the Ni/diamane composite during tensile loading are analyzed in detail. The Young’s modulus and ultimate tensile strength of Ni/diamanе composite are 147 and 22.1 GPa, respectively, but they can be increased by increasing the diamane layers in the composite. It was found that dislocation nucleation occurred at the interface between Ni and diamane. The tensile strength of Ni/diamane composite depends on the tensile direction. The results obtained contribute to a better understanding of the processes of formation, deformation behaviour, and mechanical properties of composites based on metal and diamane.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 6","pages":"3673 - 3680"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel-Matrix Composite with Diamane: Molecular Dynamics\",\"authors\":\"P. V. Polyakova\",\"doi\":\"10.1134/S0025654424606384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid development of technology and industry requires the search of new materials which combine high strength, light weight and corrosion resistance. Metal matrix composites reinforced with two-dimensional carbon allotropes exhibit impressive mechanical, physical and tribological properties. Diamane, a two-dimensional diamond, is a very promising material for the production of thin, ultra-high strength coatings and as the reinforcement for metal matrix composites. Simulation methods can considerably improve understanding of the interaction between the diamane and metal phase. Molecular dynamics allow to analyse different properties of new materials on the atomistic level. In the present work, the mechanical properties of new composite – nickel reinforced with diamane – are investigated by molecular dynamics simulation. The structural changes in the Ni/diamane composite during tensile loading are analyzed in detail. The Young’s modulus and ultimate tensile strength of Ni/diamanе composite are 147 and 22.1 GPa, respectively, but they can be increased by increasing the diamane layers in the composite. It was found that dislocation nucleation occurred at the interface between Ni and diamane. The tensile strength of Ni/diamane composite depends on the tensile direction. The results obtained contribute to a better understanding of the processes of formation, deformation behaviour, and mechanical properties of composites based on metal and diamane.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"59 6\",\"pages\":\"3673 - 3680\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654424606384\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424606384","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

科技和工业的快速发展要求寻找高强度、轻重量和耐腐蚀的新材料。用二维碳同素异形体增强的金属基复合材料表现出令人印象深刻的机械、物理和摩擦学性能。金刚石是一种二维金刚石,是一种非常有前途的材料,用于生产超薄、超高强度涂层和作为金属基复合材料的增强剂。模拟方法可以大大提高对金刚石与金属相相互作用的认识。分子动力学允许在原子水平上分析新材料的不同性质。本文采用分子动力学模拟方法研究了金刚石增强镍复合材料的力学性能。详细分析了Ni/金刚石复合材料在拉伸加载过程中的结构变化。Ni/金刚石复合材料的杨氏模量和极限抗拉强度分别为147和22.1 GPa,但可以通过增加复合材料中的金刚石层数来提高。结果表明,在Ni与金刚石的界面处出现了位错形核。镍/金刚石复合材料的拉伸强度取决于拉伸方向。所得结果有助于更好地理解基于金属和金刚石的复合材料的形成过程、变形行为和力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nickel-Matrix Composite with Diamane: Molecular Dynamics

Nickel-Matrix Composite with Diamane: Molecular Dynamics

The rapid development of technology and industry requires the search of new materials which combine high strength, light weight and corrosion resistance. Metal matrix composites reinforced with two-dimensional carbon allotropes exhibit impressive mechanical, physical and tribological properties. Diamane, a two-dimensional diamond, is a very promising material for the production of thin, ultra-high strength coatings and as the reinforcement for metal matrix composites. Simulation methods can considerably improve understanding of the interaction between the diamane and metal phase. Molecular dynamics allow to analyse different properties of new materials on the atomistic level. In the present work, the mechanical properties of new composite – nickel reinforced with diamane – are investigated by molecular dynamics simulation. The structural changes in the Ni/diamane composite during tensile loading are analyzed in detail. The Young’s modulus and ultimate tensile strength of Ni/diamanе composite are 147 and 22.1 GPa, respectively, but they can be increased by increasing the diamane layers in the composite. It was found that dislocation nucleation occurred at the interface between Ni and diamane. The tensile strength of Ni/diamane composite depends on the tensile direction. The results obtained contribute to a better understanding of the processes of formation, deformation behaviour, and mechanical properties of composites based on metal and diamane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信