基于注意力的时空同步图卷积网络交通流预测

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoduo Wei, Dawen Xia, Yunsong Li, Yuce Ao, Yan Chen, Yang Hu, Yantao Li, Huaqing Li
{"title":"基于注意力的时空同步图卷积网络交通流预测","authors":"Xiaoduo Wei,&nbsp;Dawen Xia,&nbsp;Yunsong Li,&nbsp;Yuce Ao,&nbsp;Yan Chen,&nbsp;Yang Hu,&nbsp;Yantao Li,&nbsp;Huaqing Li","doi":"10.1007/s10489-025-06341-4","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate traffic flow forecasting is crucial for urban traffic control, planning, and detection. Most existing spatial-temporal modeling methods overlook the hidden dynamic correlations between road network nodes and the time series nonstationarity while synchronously capturing complex long- and short-term spatial-temporal dependencies. To this end, this paper proposes an <b>A</b>ttention-based <b>S</b>patial-<b>T</b>emporal <b>S</b>ynchronous <b>G</b>raph <b>C</b>onvolutional <b>N</b>etwork (AST-SGCN) to capture complex spatial-temporal correlations over long and short terms. Specifically, we design a self-attention mechanism that utilizes spatial-temporal synchronous computation to efficiently mine dynamic spatial-temporal correlations with changes in traffic and enhance computational efficiency. Then, we construct a residual adaptive adjacency matrix, which includes historical data and node vectors, to stimulate the information transfer of spatial-temporal graph nodes and mine the hidden spatial-temporal dependencies through the graph convolution layer. Next, we establish a Fourier transform layer (FTL) to handle the nonstationary data. Finally, we develop a spatial-temporal hybrid stacking module for capturing complex long-term spatial-temporal correlations, within which two layers of graph convolution and one layer of self-attention are deployed. Extensive experimental results on three real-world traffic flow datasets demonstrate that our AST-SGCN model outperforms the comparable models.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06341-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Attention-based spatial-temporal synchronous graph convolution networks for traffic flow forecasting\",\"authors\":\"Xiaoduo Wei,&nbsp;Dawen Xia,&nbsp;Yunsong Li,&nbsp;Yuce Ao,&nbsp;Yan Chen,&nbsp;Yang Hu,&nbsp;Yantao Li,&nbsp;Huaqing Li\",\"doi\":\"10.1007/s10489-025-06341-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate traffic flow forecasting is crucial for urban traffic control, planning, and detection. Most existing spatial-temporal modeling methods overlook the hidden dynamic correlations between road network nodes and the time series nonstationarity while synchronously capturing complex long- and short-term spatial-temporal dependencies. To this end, this paper proposes an <b>A</b>ttention-based <b>S</b>patial-<b>T</b>emporal <b>S</b>ynchronous <b>G</b>raph <b>C</b>onvolutional <b>N</b>etwork (AST-SGCN) to capture complex spatial-temporal correlations over long and short terms. Specifically, we design a self-attention mechanism that utilizes spatial-temporal synchronous computation to efficiently mine dynamic spatial-temporal correlations with changes in traffic and enhance computational efficiency. Then, we construct a residual adaptive adjacency matrix, which includes historical data and node vectors, to stimulate the information transfer of spatial-temporal graph nodes and mine the hidden spatial-temporal dependencies through the graph convolution layer. Next, we establish a Fourier transform layer (FTL) to handle the nonstationary data. Finally, we develop a spatial-temporal hybrid stacking module for capturing complex long-term spatial-temporal correlations, within which two layers of graph convolution and one layer of self-attention are deployed. Extensive experimental results on three real-world traffic flow datasets demonstrate that our AST-SGCN model outperforms the comparable models.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-025-06341-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06341-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06341-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

准确的交通流预测对于城市交通控制、规划和检测至关重要。现有的大多数时空建模方法在同步捕捉复杂的长短期时空依赖关系的同时,忽略了路网节点之间隐藏的动态相关性和时间序列的非平稳性。为此,本文提出了一种基于注意力的时空同步图卷积网络(AST-SGCN)来捕获长期和短期的复杂时空相关性。具体而言,我们设计了一种利用时空同步计算的自关注机制,以有效地挖掘交通变化的动态时空相关性,提高计算效率。然后,构建包含历史数据和节点向量的残差自适应邻接矩阵,通过图卷积层激发图节点的时空信息传递,挖掘隐藏的时空依赖关系。其次,我们建立了一个傅立叶变换层(FTL)来处理非平稳数据。最后,我们开发了一个时空混合叠加模块,用于捕获复杂的长期时空相关性,其中部署了两层图卷积和一层自关注。在三个真实交通流数据集上的大量实验结果表明,我们的AST-SGCN模型优于可比模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention-based spatial-temporal synchronous graph convolution networks for traffic flow forecasting

Accurate traffic flow forecasting is crucial for urban traffic control, planning, and detection. Most existing spatial-temporal modeling methods overlook the hidden dynamic correlations between road network nodes and the time series nonstationarity while synchronously capturing complex long- and short-term spatial-temporal dependencies. To this end, this paper proposes an Attention-based Spatial-Temporal Synchronous Graph Convolutional Network (AST-SGCN) to capture complex spatial-temporal correlations over long and short terms. Specifically, we design a self-attention mechanism that utilizes spatial-temporal synchronous computation to efficiently mine dynamic spatial-temporal correlations with changes in traffic and enhance computational efficiency. Then, we construct a residual adaptive adjacency matrix, which includes historical data and node vectors, to stimulate the information transfer of spatial-temporal graph nodes and mine the hidden spatial-temporal dependencies through the graph convolution layer. Next, we establish a Fourier transform layer (FTL) to handle the nonstationary data. Finally, we develop a spatial-temporal hybrid stacking module for capturing complex long-term spatial-temporal correlations, within which two layers of graph convolution and one layer of self-attention are deployed. Extensive experimental results on three real-world traffic flow datasets demonstrate that our AST-SGCN model outperforms the comparable models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信