{"title":"关于通过聚类进行多元极值估计和阶次选择","authors":"Shiyuan Deng , He Tang , Shuyang Bai","doi":"10.1016/j.jmva.2025.105426","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the estimation of multivariate extreme models with a discrete spectral measure using spherical clustering techniques. The primary contribution involves devising a method for selecting the order, that is, the number of clusters. The method consistently identifies the true order, i.e., the number of spectral atoms, and enjoys intuitive implementation in practice. Specifically, we introduce an extra penalty term to the well-known simplified average silhouette width, which penalizes small cluster sizes and small dissimilarities between cluster centers. Consequently, we provide a consistent method for determining the order of a max-linear factor model, where a typical information-based approach is not viable. Our second contribution is a large-deviation-type analysis for estimating the discrete spectral measure through clustering methods, which serves as an assessment of the convergence quality of clustering-based estimation for multivariate extremes. Additionally, as a third contribution, we discuss how estimating the discrete measure can lead to parameter estimations of heavy-tailed factor models. We also present simulations and real-data studies that demonstrate order selection and factor model estimation.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105426"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On estimation and order selection for multivariate extremes via clustering\",\"authors\":\"Shiyuan Deng , He Tang , Shuyang Bai\",\"doi\":\"10.1016/j.jmva.2025.105426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the estimation of multivariate extreme models with a discrete spectral measure using spherical clustering techniques. The primary contribution involves devising a method for selecting the order, that is, the number of clusters. The method consistently identifies the true order, i.e., the number of spectral atoms, and enjoys intuitive implementation in practice. Specifically, we introduce an extra penalty term to the well-known simplified average silhouette width, which penalizes small cluster sizes and small dissimilarities between cluster centers. Consequently, we provide a consistent method for determining the order of a max-linear factor model, where a typical information-based approach is not viable. Our second contribution is a large-deviation-type analysis for estimating the discrete spectral measure through clustering methods, which serves as an assessment of the convergence quality of clustering-based estimation for multivariate extremes. Additionally, as a third contribution, we discuss how estimating the discrete measure can lead to parameter estimations of heavy-tailed factor models. We also present simulations and real-data studies that demonstrate order selection and factor model estimation.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"208 \",\"pages\":\"Article 105426\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000211\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000211","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On estimation and order selection for multivariate extremes via clustering
We investigate the estimation of multivariate extreme models with a discrete spectral measure using spherical clustering techniques. The primary contribution involves devising a method for selecting the order, that is, the number of clusters. The method consistently identifies the true order, i.e., the number of spectral atoms, and enjoys intuitive implementation in practice. Specifically, we introduce an extra penalty term to the well-known simplified average silhouette width, which penalizes small cluster sizes and small dissimilarities between cluster centers. Consequently, we provide a consistent method for determining the order of a max-linear factor model, where a typical information-based approach is not viable. Our second contribution is a large-deviation-type analysis for estimating the discrete spectral measure through clustering methods, which serves as an assessment of the convergence quality of clustering-based estimation for multivariate extremes. Additionally, as a third contribution, we discuss how estimating the discrete measure can lead to parameter estimations of heavy-tailed factor models. We also present simulations and real-data studies that demonstrate order selection and factor model estimation.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.