{"title":"多保真度计算机实验的固定预算优化设计","authors":"Gecheng Chen, Rui Tuo","doi":"10.1016/j.jspi.2025.106286","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on the design of experiments of multi-fidelity computer experiments. We consider the autoregressive Gaussian process model proposed by Kennedy and O’Hagan (2000) and the optimal nested design that maximizes the prediction accuracy subject to a budget constraint. An approximate solution is identified through the idea of multi-level approximation and recent error bounds of Gaussian process regression. The proposed (approximately) optimal designs admit a simple analytical form. We prove that, to achieve the same prediction accuracy, the proposed optimal multi-fidelity design requires much lower computational cost than any single-fidelity design in the asymptotic sense. Numerical studies confirm this theoretical assertion.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"239 ","pages":"Article 106286"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-budget optimal designs for multi-fidelity computer experiments\",\"authors\":\"Gecheng Chen, Rui Tuo\",\"doi\":\"10.1016/j.jspi.2025.106286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work focuses on the design of experiments of multi-fidelity computer experiments. We consider the autoregressive Gaussian process model proposed by Kennedy and O’Hagan (2000) and the optimal nested design that maximizes the prediction accuracy subject to a budget constraint. An approximate solution is identified through the idea of multi-level approximation and recent error bounds of Gaussian process regression. The proposed (approximately) optimal designs admit a simple analytical form. We prove that, to achieve the same prediction accuracy, the proposed optimal multi-fidelity design requires much lower computational cost than any single-fidelity design in the asymptotic sense. Numerical studies confirm this theoretical assertion.</div></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"239 \",\"pages\":\"Article 106286\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375825000242\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000242","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Fixed-budget optimal designs for multi-fidelity computer experiments
This work focuses on the design of experiments of multi-fidelity computer experiments. We consider the autoregressive Gaussian process model proposed by Kennedy and O’Hagan (2000) and the optimal nested design that maximizes the prediction accuracy subject to a budget constraint. An approximate solution is identified through the idea of multi-level approximation and recent error bounds of Gaussian process regression. The proposed (approximately) optimal designs admit a simple analytical form. We prove that, to achieve the same prediction accuracy, the proposed optimal multi-fidelity design requires much lower computational cost than any single-fidelity design in the asymptotic sense. Numerical studies confirm this theoretical assertion.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.