利用 iPSC 衍生心肌细胞的机器学习方法研究药物作用并识别无症状和无症状突变携带的信号

Q1 Medicine
Martti Juhola , Henry Joutsijoki , Kirsi Penttinen , Katriina Aalto-Setälä
{"title":"利用 iPSC 衍生心肌细胞的机器学习方法研究药物作用并识别无症状和无症状突变携带的信号","authors":"Martti Juhola ,&nbsp;Henry Joutsijoki ,&nbsp;Kirsi Penttinen ,&nbsp;Katriina Aalto-Setälä","doi":"10.1016/j.imu.2025.101631","DOIUrl":null,"url":null,"abstract":"<div><div>Earlier it has been found that peak data of calcium transient signals originating from human induced pluripotent stem cell-derived cardiomyocytes are possible to be used to study how machine learning methods can be applied to separate which cells respond to a drug. Beating behavior of induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from a symptomatic individual and an asymptomatic individual carrying a mutation for Brugada syndrome was analyzed with Ca<sup>2+</sup> imaging method. Using machine learning methods, it is studied whether it is possible to classify the current peak data successfully and whether differences in the two mutant cell lines could be observed. We applied more machine learning methods than before. Baseline signals were first recorded and they were then exposed to adrenaline and these to an antiarrhythmic drug flecainide which should provoke the disease phenotype. Calcium transient signals derived from induced pluripotent stem cell-derived cardiomyocytes were used for all computational analyses executed. Good classification results were generated with effective machine learning methods. Various test situations were applied to study how different parts of data can be separated to ensure their differences. Good results were gained that support the target so that it is possible to analyze whether the drug impacted on iPSC-CMs. It is also possible to separate which cells were affected by the drug and which were not affected. An important finding was that there were significant differences between calcium transient signals data originated from control subjects and patients and also between responses of the cells from symptomatic and asymptomatic individuals.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"54 ","pages":"Article 101631"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approach to study drug effects and identification of signals from symptomatic and asymptomatic mutation carries using iPSC-derived cardiomyocytes\",\"authors\":\"Martti Juhola ,&nbsp;Henry Joutsijoki ,&nbsp;Kirsi Penttinen ,&nbsp;Katriina Aalto-Setälä\",\"doi\":\"10.1016/j.imu.2025.101631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Earlier it has been found that peak data of calcium transient signals originating from human induced pluripotent stem cell-derived cardiomyocytes are possible to be used to study how machine learning methods can be applied to separate which cells respond to a drug. Beating behavior of induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from a symptomatic individual and an asymptomatic individual carrying a mutation for Brugada syndrome was analyzed with Ca<sup>2+</sup> imaging method. Using machine learning methods, it is studied whether it is possible to classify the current peak data successfully and whether differences in the two mutant cell lines could be observed. We applied more machine learning methods than before. Baseline signals were first recorded and they were then exposed to adrenaline and these to an antiarrhythmic drug flecainide which should provoke the disease phenotype. Calcium transient signals derived from induced pluripotent stem cell-derived cardiomyocytes were used for all computational analyses executed. Good classification results were generated with effective machine learning methods. Various test situations were applied to study how different parts of data can be separated to ensure their differences. Good results were gained that support the target so that it is possible to analyze whether the drug impacted on iPSC-CMs. It is also possible to separate which cells were affected by the drug and which were not affected. An important finding was that there were significant differences between calcium transient signals data originated from control subjects and patients and also between responses of the cells from symptomatic and asymptomatic individuals.</div></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"54 \",\"pages\":\"Article 101631\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235291482500019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235291482500019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

早些时候已经发现,来自人类诱导多能干细胞衍生的心肌细胞的钙瞬态信号的峰值数据可以用于研究如何应用机器学习方法来分离哪些细胞对药物有反应。用Ca2+显像方法分析了Brugada综合征有症状个体和无症状个体的诱导多能干细胞来源的心肌细胞(iPSC-CMs)的跳动行为。使用机器学习方法,研究是否有可能成功地对当前峰值数据进行分类,以及是否可以观察到两种突变细胞系的差异。我们比以前应用了更多的机器学习方法。首先记录基线信号,然后将它们暴露于肾上腺素中,这些暴露于抗心律失常药物flecainide中,这应该会引发疾病表型。来自诱导多能干细胞衍生的心肌细胞的钙瞬态信号用于执行的所有计算分析。使用有效的机器学习方法生成了良好的分类结果。通过不同的测试情况来研究如何将数据的不同部分分离以保证它们的差异性。获得了支持靶标的良好结果,从而可以分析药物是否影响iPSC-CMs。还可以区分哪些细胞受到药物的影响,哪些细胞没有受到影响。一个重要的发现是,来自对照组和患者的钙瞬态信号数据以及来自有症状和无症状个体的细胞反应之间存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning approach to study drug effects and identification of signals from symptomatic and asymptomatic mutation carries using iPSC-derived cardiomyocytes
Earlier it has been found that peak data of calcium transient signals originating from human induced pluripotent stem cell-derived cardiomyocytes are possible to be used to study how machine learning methods can be applied to separate which cells respond to a drug. Beating behavior of induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from a symptomatic individual and an asymptomatic individual carrying a mutation for Brugada syndrome was analyzed with Ca2+ imaging method. Using machine learning methods, it is studied whether it is possible to classify the current peak data successfully and whether differences in the two mutant cell lines could be observed. We applied more machine learning methods than before. Baseline signals were first recorded and they were then exposed to adrenaline and these to an antiarrhythmic drug flecainide which should provoke the disease phenotype. Calcium transient signals derived from induced pluripotent stem cell-derived cardiomyocytes were used for all computational analyses executed. Good classification results were generated with effective machine learning methods. Various test situations were applied to study how different parts of data can be separated to ensure their differences. Good results were gained that support the target so that it is possible to analyze whether the drug impacted on iPSC-CMs. It is also possible to separate which cells were affected by the drug and which were not affected. An important finding was that there were significant differences between calcium transient signals data originated from control subjects and patients and also between responses of the cells from symptomatic and asymptomatic individuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信