机器学习的“化学直觉”克服光谱数据稀缺

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Cailum M. K. Stienstra, Teun van Wieringen, Liam Hebert, Patrick Thomas, Kas J. Houthuijs, Giel Berden, Jos Oomens, Jonathan Martens* and W. Scott Hopkins*, 
{"title":"机器学习的“化学直觉”克服光谱数据稀缺","authors":"Cailum M. K. Stienstra,&nbsp;Teun van Wieringen,&nbsp;Liam Hebert,&nbsp;Patrick Thomas,&nbsp;Kas J. Houthuijs,&nbsp;Giel Berden,&nbsp;Jos Oomens,&nbsp;Jonathan Martens* and W. Scott Hopkins*,&nbsp;","doi":"10.1021/acs.jcim.4c0232910.1021/acs.jcim.4c02329","DOIUrl":null,"url":null,"abstract":"<p >Machine learning models for predicting IR spectra of molecular ions (infrared ion spectroscopy, IRIS) have yet to be reported owing to the relatively sparse experimental data sets available. To overcome this limitation, we employ the Graphormer-IR model for neutral molecules as a knowledgeable starting point and then employ transfer learning to refine the model to predict the spectra of gaseous ions. A library of 10,336 computed spectra and a small data set of 312 experimental IRIS spectra is used for model fine-tuning. Nonspecific global graph encodings that describe the molecular charge state (<i>i.e</i>., (de)protonation, sodiation), combined with an additional transfer learning step that considers computed spectra for ions, improved model performance. The resulting Graphormer-IRIS model yields spectra that are 21% more accurate than those produced by commonly employed DFT quantum chemical models, while capturing subtle phenomena such as spectral red-shifts due to sodiation. Dimensionality reduction of model embeddings demonstrates derived “chemical intuition” of functional groups, trends in molecular electron density, and the location of charge sites. Our approach will enable fast IRIS predictions for determining the structures of unknown small molecule analytes (<i>e.g</i>., metabolites, lipids) present in biological samples.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 5","pages":"2385–2394 2385–2394"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine-Learned “Chemical Intuition” to Overcome Spectroscopic Data Scarcity\",\"authors\":\"Cailum M. K. Stienstra,&nbsp;Teun van Wieringen,&nbsp;Liam Hebert,&nbsp;Patrick Thomas,&nbsp;Kas J. Houthuijs,&nbsp;Giel Berden,&nbsp;Jos Oomens,&nbsp;Jonathan Martens* and W. Scott Hopkins*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.4c0232910.1021/acs.jcim.4c02329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Machine learning models for predicting IR spectra of molecular ions (infrared ion spectroscopy, IRIS) have yet to be reported owing to the relatively sparse experimental data sets available. To overcome this limitation, we employ the Graphormer-IR model for neutral molecules as a knowledgeable starting point and then employ transfer learning to refine the model to predict the spectra of gaseous ions. A library of 10,336 computed spectra and a small data set of 312 experimental IRIS spectra is used for model fine-tuning. Nonspecific global graph encodings that describe the molecular charge state (<i>i.e</i>., (de)protonation, sodiation), combined with an additional transfer learning step that considers computed spectra for ions, improved model performance. The resulting Graphormer-IRIS model yields spectra that are 21% more accurate than those produced by commonly employed DFT quantum chemical models, while capturing subtle phenomena such as spectral red-shifts due to sodiation. Dimensionality reduction of model embeddings demonstrates derived “chemical intuition” of functional groups, trends in molecular electron density, and the location of charge sites. Our approach will enable fast IRIS predictions for determining the structures of unknown small molecule analytes (<i>e.g</i>., metabolites, lipids) present in biological samples.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 5\",\"pages\":\"2385–2394 2385–2394\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02329\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02329","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

由于可用的实验数据集相对稀疏,用于预测分子离子红外光谱的机器学习模型(红外离子光谱,IRIS)尚未被报道。为了克服这一限制,我们采用中性分子的Graphormer-IR模型作为知识起点,然后使用迁移学习来改进模型以预测气态离子的光谱。使用10,336个计算光谱库和312个实验IRIS光谱的小数据集进行模型微调。描述分子电荷状态(即(去)质子化、碱化)的非特异性全局图编码,结合考虑计算离子谱的额外迁移学习步骤,提高了模型性能。由此产生的graphhormer - iris模型产生的光谱比通常使用的DFT量子化学模型产生的光谱精确21%,同时捕捉到细微的现象,如光谱红移,由于钠化。模型嵌入的降维证明了衍生的官能团的“化学直觉”、分子电子密度的趋势和电荷位点的位置。我们的方法将实现快速IRIS预测,以确定生物样品中存在的未知小分子分析物(例如,代谢物,脂质)的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Machine-Learned “Chemical Intuition” to Overcome Spectroscopic Data Scarcity

A Machine-Learned “Chemical Intuition” to Overcome Spectroscopic Data Scarcity

Machine learning models for predicting IR spectra of molecular ions (infrared ion spectroscopy, IRIS) have yet to be reported owing to the relatively sparse experimental data sets available. To overcome this limitation, we employ the Graphormer-IR model for neutral molecules as a knowledgeable starting point and then employ transfer learning to refine the model to predict the spectra of gaseous ions. A library of 10,336 computed spectra and a small data set of 312 experimental IRIS spectra is used for model fine-tuning. Nonspecific global graph encodings that describe the molecular charge state (i.e., (de)protonation, sodiation), combined with an additional transfer learning step that considers computed spectra for ions, improved model performance. The resulting Graphormer-IRIS model yields spectra that are 21% more accurate than those produced by commonly employed DFT quantum chemical models, while capturing subtle phenomena such as spectral red-shifts due to sodiation. Dimensionality reduction of model embeddings demonstrates derived “chemical intuition” of functional groups, trends in molecular electron density, and the location of charge sites. Our approach will enable fast IRIS predictions for determining the structures of unknown small molecule analytes (e.g., metabolites, lipids) present in biological samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信