通过协同策略提高LiCoO2在高压下的结构/界面稳定性和Li+扩散动力学

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hongwei Zhu, Shidi Huang*, Zhe Cui, Mengluan Gao, Wenqing Wang and Rujia Zou*, 
{"title":"通过协同策略提高LiCoO2在高压下的结构/界面稳定性和Li+扩散动力学","authors":"Hongwei Zhu,&nbsp;Shidi Huang*,&nbsp;Zhe Cui,&nbsp;Mengluan Gao,&nbsp;Wenqing Wang and Rujia Zou*,&nbsp;","doi":"10.1021/acsaem.4c0303710.1021/acsaem.4c03037","DOIUrl":null,"url":null,"abstract":"<p >Although elevating the upper cutoff voltage can directly increase the reversible capacity of LiCoO<sub>2</sub> (LCO), severe capacity fading caused by structural and interfacial degradation restricts its practical application. Herein, we propose a synergetic modification strategy combined with La<sup>3+</sup> doping and LiTaO<sub>3</sub> (LTO) coating to enhance the electrochemical performance of LCO operating at high voltages. Generally, La<sup>3+</sup> doping can increase the interlayer spacing and significantly increases the ion conductivity, while the LTO coating acts as a robust protection layer, which also facilitates the interfacial Li<sup>+</sup> diffusion. As a result, comodified LCO shows an enhanced capacity retention of 88.6% after 200 cycles at 3.0–4.5 V, while the capacity retention of Bare LCO is only 25.4%. For a higher cutoff voltage of 4.6 V, comodified LCO still exhibits an excellent capacity retention of 85.7% after 100 cycles.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 5","pages":"2904–2914 2904–2914"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Structural/Interfacial Stability and Li+ Diffusion Kinetics of LiCoO2 at High Voltage via a Synergetic Strategy\",\"authors\":\"Hongwei Zhu,&nbsp;Shidi Huang*,&nbsp;Zhe Cui,&nbsp;Mengluan Gao,&nbsp;Wenqing Wang and Rujia Zou*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0303710.1021/acsaem.4c03037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Although elevating the upper cutoff voltage can directly increase the reversible capacity of LiCoO<sub>2</sub> (LCO), severe capacity fading caused by structural and interfacial degradation restricts its practical application. Herein, we propose a synergetic modification strategy combined with La<sup>3+</sup> doping and LiTaO<sub>3</sub> (LTO) coating to enhance the electrochemical performance of LCO operating at high voltages. Generally, La<sup>3+</sup> doping can increase the interlayer spacing and significantly increases the ion conductivity, while the LTO coating acts as a robust protection layer, which also facilitates the interfacial Li<sup>+</sup> diffusion. As a result, comodified LCO shows an enhanced capacity retention of 88.6% after 200 cycles at 3.0–4.5 V, while the capacity retention of Bare LCO is only 25.4%. For a higher cutoff voltage of 4.6 V, comodified LCO still exhibits an excellent capacity retention of 85.7% after 100 cycles.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 5\",\"pages\":\"2904–2914 2904–2914\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c03037\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03037","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然提高上限截止电压可以直接提高钴酸锂(LCO)的可逆容量,但结构和界面退化导致的严重容量衰减限制了其实际应用。在此,我们提出了一种结合 La3+ 掺杂和 LiTaO3(LTO)镀膜的协同改性策略,以提高钴酸锂在高电压下的电化学性能。一般来说,掺杂 La3+ 可以增大层间间距,显著提高离子导电率,而 LTO 涂层则是一个坚固的保护层,也有利于界面 Li+ 扩散。因此,在 3.0-4.5 V 下循环 200 次后,复合 LCO 的容量保持率提高了 88.6%,而裸 LCO 的容量保持率仅为 25.4%。在更高的截止电压 4.6 V 下,经过 100 次循环后,复合 LCO 的容量保持率仍高达 85.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Structural/Interfacial Stability and Li+ Diffusion Kinetics of LiCoO2 at High Voltage via a Synergetic Strategy

Enhancing Structural/Interfacial Stability and Li+ Diffusion Kinetics of LiCoO2 at High Voltage via a Synergetic Strategy

Although elevating the upper cutoff voltage can directly increase the reversible capacity of LiCoO2 (LCO), severe capacity fading caused by structural and interfacial degradation restricts its practical application. Herein, we propose a synergetic modification strategy combined with La3+ doping and LiTaO3 (LTO) coating to enhance the electrochemical performance of LCO operating at high voltages. Generally, La3+ doping can increase the interlayer spacing and significantly increases the ion conductivity, while the LTO coating acts as a robust protection layer, which also facilitates the interfacial Li+ diffusion. As a result, comodified LCO shows an enhanced capacity retention of 88.6% after 200 cycles at 3.0–4.5 V, while the capacity retention of Bare LCO is only 25.4%. For a higher cutoff voltage of 4.6 V, comodified LCO still exhibits an excellent capacity retention of 85.7% after 100 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信