Christian Fellinger, Thomas Seidel*, Benjamin Merget, Klaus-Juergen Schleifer and Thierry Langer,
{"title":"GRADE和X-GRADE:揭示基于GRAIL分数的新的蛋白质-配体相互作用指纹图谱","authors":"Christian Fellinger, Thomas Seidel*, Benjamin Merget, Klaus-Juergen Schleifer and Thierry Langer, ","doi":"10.1021/acs.jcim.4c0190210.1021/acs.jcim.4c01902","DOIUrl":null,"url":null,"abstract":"<p >Nonbonding molecular interactions, such as hydrogen bonding, hydrophobic contacts, ionic interactions, etc., are at the heart of many biological processes, and their appropriate treatment is essential for the successful application of numerous computational drug design methods. This paper introduces GRADE, a novel interaction fingerprint (IFP) descriptor that quantifies these interactions using floating point values derived from GRAIL scores, encoding both the presence and quality of interactions. GRADE is available in two versions: a basic 35-element variant and an extended 177-element variant. Three case studies demonstrate GRADE’s utility: (1) dimensionality reduction for visualizing the chemical space of protein–ligand complexes using Uniform Manifold Approximation and Projection (UMAP), showing competitive performance with complex descriptors; (2) binding affinity prediction, where GRADE achieved reasonable accuracy with minimal machine learning optimization; and (3) three-dimensional-quantitative structure–activity relationship (3D-QSAR) modeling for a specific protein target, where GRADE enhanced the performance of Morgan Fingerprints.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 5","pages":"2456–2475 2456–2475"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01902","citationCount":"0","resultStr":"{\"title\":\"GRADE and X-GRADE: Unveiling Novel Protein–Ligand Interaction Fingerprints Based on GRAIL Scores\",\"authors\":\"Christian Fellinger, Thomas Seidel*, Benjamin Merget, Klaus-Juergen Schleifer and Thierry Langer, \",\"doi\":\"10.1021/acs.jcim.4c0190210.1021/acs.jcim.4c01902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nonbonding molecular interactions, such as hydrogen bonding, hydrophobic contacts, ionic interactions, etc., are at the heart of many biological processes, and their appropriate treatment is essential for the successful application of numerous computational drug design methods. This paper introduces GRADE, a novel interaction fingerprint (IFP) descriptor that quantifies these interactions using floating point values derived from GRAIL scores, encoding both the presence and quality of interactions. GRADE is available in two versions: a basic 35-element variant and an extended 177-element variant. Three case studies demonstrate GRADE’s utility: (1) dimensionality reduction for visualizing the chemical space of protein–ligand complexes using Uniform Manifold Approximation and Projection (UMAP), showing competitive performance with complex descriptors; (2) binding affinity prediction, where GRADE achieved reasonable accuracy with minimal machine learning optimization; and (3) three-dimensional-quantitative structure–activity relationship (3D-QSAR) modeling for a specific protein target, where GRADE enhanced the performance of Morgan Fingerprints.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 5\",\"pages\":\"2456–2475 2456–2475\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01902\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01902\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01902","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
GRADE and X-GRADE: Unveiling Novel Protein–Ligand Interaction Fingerprints Based on GRAIL Scores
Nonbonding molecular interactions, such as hydrogen bonding, hydrophobic contacts, ionic interactions, etc., are at the heart of many biological processes, and their appropriate treatment is essential for the successful application of numerous computational drug design methods. This paper introduces GRADE, a novel interaction fingerprint (IFP) descriptor that quantifies these interactions using floating point values derived from GRAIL scores, encoding both the presence and quality of interactions. GRADE is available in two versions: a basic 35-element variant and an extended 177-element variant. Three case studies demonstrate GRADE’s utility: (1) dimensionality reduction for visualizing the chemical space of protein–ligand complexes using Uniform Manifold Approximation and Projection (UMAP), showing competitive performance with complex descriptors; (2) binding affinity prediction, where GRADE achieved reasonable accuracy with minimal machine learning optimization; and (3) three-dimensional-quantitative structure–activity relationship (3D-QSAR) modeling for a specific protein target, where GRADE enhanced the performance of Morgan Fingerprints.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.