ENACT:Visium 高清(HD)数据端到端分析。

Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas
{"title":"ENACT:Visium 高清(HD)数据端到端分析。","authors":"Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas","doi":"10.1093/bioinformatics/btaf094","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.</p><p><strong>Results: </strong>We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalableto samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.</p><p><strong>Availability and implementation: </strong>ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data is available at https://zenodo.org/records/14748859.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENACT: End-to-end Analysis of Visium High Definition (HD) Data.\",\"authors\":\"Mena Kamel, Yiwen Song, Ana Solbas, Sergio Villordo, Amrut Sarangi, Pavel Senin, Mathew Sunaal, Luis Cano Ayestas, Clement Levin, Seqian Wang, Marion Classe, Ziv Bar-Joseph, Albert Pla Planas\",\"doi\":\"10.1093/bioinformatics/btaf094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.</p><p><strong>Results: </strong>We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalableto samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.</p><p><strong>Availability and implementation: </strong>ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data is available at https://zenodo.org/records/14748859.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENACT: End-to-end Analysis of Visium High Definition (HD) Data.

Motivation: Spatial transcriptomics (ST) enables the study of gene expression within its spatial context in histopathology samples. To date, a limiting factor has been the resolution of sequencing based ST products. The introduction of the Visium High Definition (HD) technology opens the door to cell resolution ST studies. However, challenges remain in the ability to accurately map transcripts to cells and in assigning cell types based on the transcript data.

Results: We developed ENACT, a self-contained pipeline that integrates advanced cell segmentation with Visium HD transcriptomics data to infer cell types across whole tissue sections. Our pipeline incorporates novel bin-to-cell assignment methods, enhancing the accuracy of single-cell transcript estimates. Validated on diverse synthetic and real datasets, our approach is both scalableto samples with hundreds of thousands of cells and effective, offering a robust solution for spatially resolved transcriptomics analysis.

Availability and implementation: ENACT source code is available at https://github.com/Sanofi-Public/enact-pipeline. Experimental data is available at https://zenodo.org/records/14748859.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信